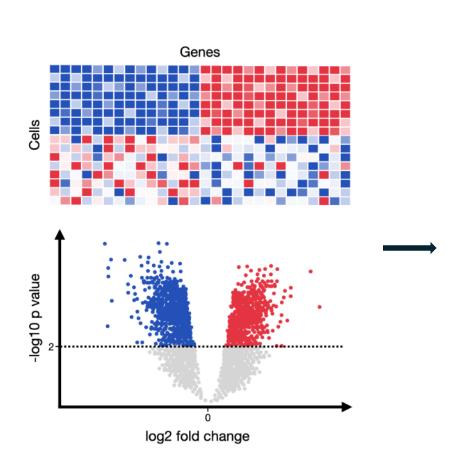


GSVA: gene set variation analysis for microarray and RNA-Seq data

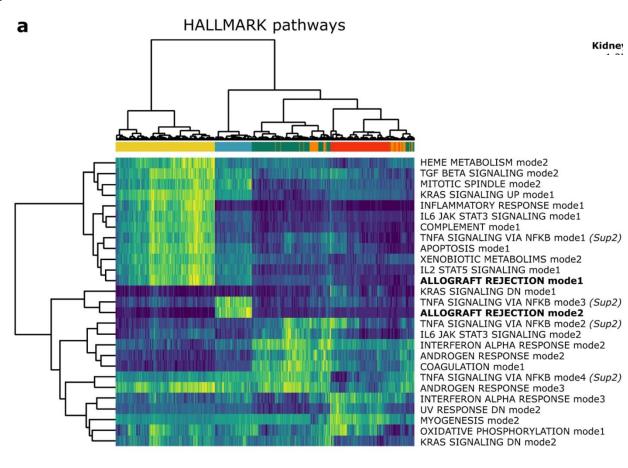
Sonja Hänzelmann^{1,2}, Robert Castelo^{1,2*} and Justin Guinney^{3*}

Hui Huang
Data Science Journal Club
10.16.2025

Why pathway-level analysis?



noisy, small effects, hard to interpret.



stable and interpretable

Classic Gene Set Enrichment (GSE) workflow: rank genes → map to gene sets → compute pathway scores for downstream analyses

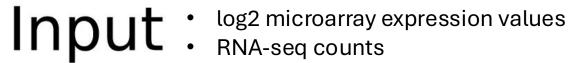
GSE: What to Know

- Two GSE tests: Competitive (set vs rest) and Self-contained (set alone).
- **Limits**: many methods are group-level/supervised; don't fit multiphenotype/censored data.
- Single-sample (PLAGE, ssGSEA, z-score) helps, but relies on strong assumptions.
- Need: per-sample, assumption-light pathway scores → GSVA.

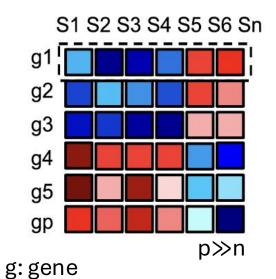
Where Gene Set Variation Analysis (GSVA) fits

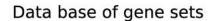
GSVA turns many gene expressions into one **pathway score per sample**, with no phenotype needed.

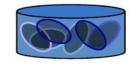
GSVA methods outline



Gene expression matrix



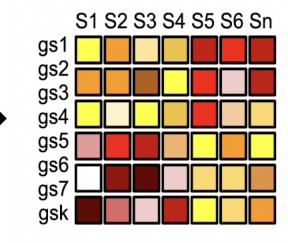




k gene sets

KEGG

GSVA score matrix



gs: gene set

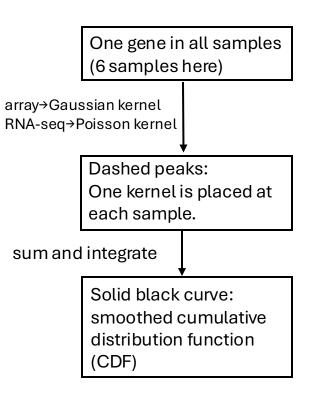
How to get the gene set score for each sample?

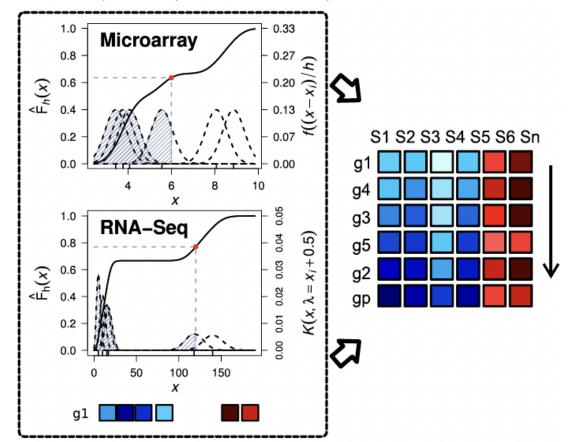
GSVA Algorithm

GSVA Algorithm

1. Gene expression level statistic 2. Rank order per sample

Simulated expression profiles for six samples





Genes × Samples = Percentiles (0–1) $P_{ij} = F_i(x_{ij})$

$$P = egin{bmatrix} 0.10 & 0.85 & 0.40 & 0.60 \ 0.70 & 0.20 & 0.95 & 0.55 \ 0.30 & 0.45 & 0.10 & 0.80 \end{bmatrix}$$

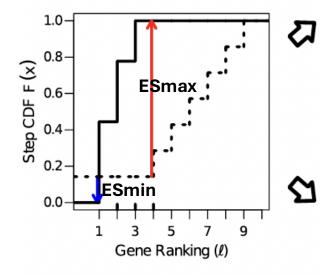
eg.: $P_{1,2} = 0.85$ means gene 1 is high in Sample 2 (higher than 85% of samples).

Blue = low percentile;

Red = high percentile (high expression).

GSVA Algorithm

3. KS-like random statistic



|γ|: number of genes in the set (gene set size)

p: total genes considered in the ranking

Up-step (in-set gene): $\frac{1}{|\gamma|}$ Down-step (out-of-set gene): $\frac{1}{(p-|\gamma|)}$

$$y = 3$$

 $p = 10$
 $1/|y| = 1/3 \approx 0.333$
 $1/(p-|y|) = 1/7 \approx 0.143$

- **ESmax (maximum enrichment score):** the highest point of the running-sum line above zero.
- ESmin (minimum enrichment score): the lowest point of the running-sum line above zero.
- Unweighted KS-like walk: each hit triggers a fixed step.

Why ranking important?

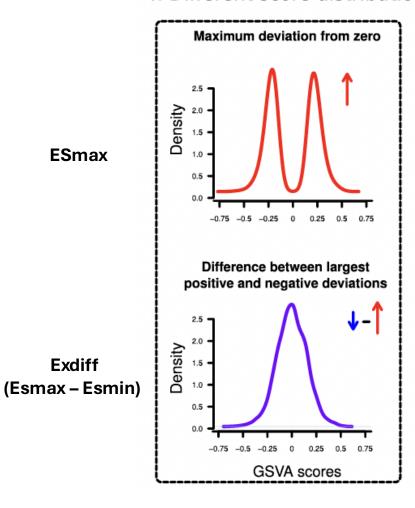
 If set genes cluster at the top of the ranking, the curve rises quickly → large ESmax.

GSVA Algorithm

ESmax

Exdiff

4. Different score distributions



top-ranked in-set genes ⇒ positive

bottom-skewed ⇒ negative

Use ESmax when you care about direction (up vs down)

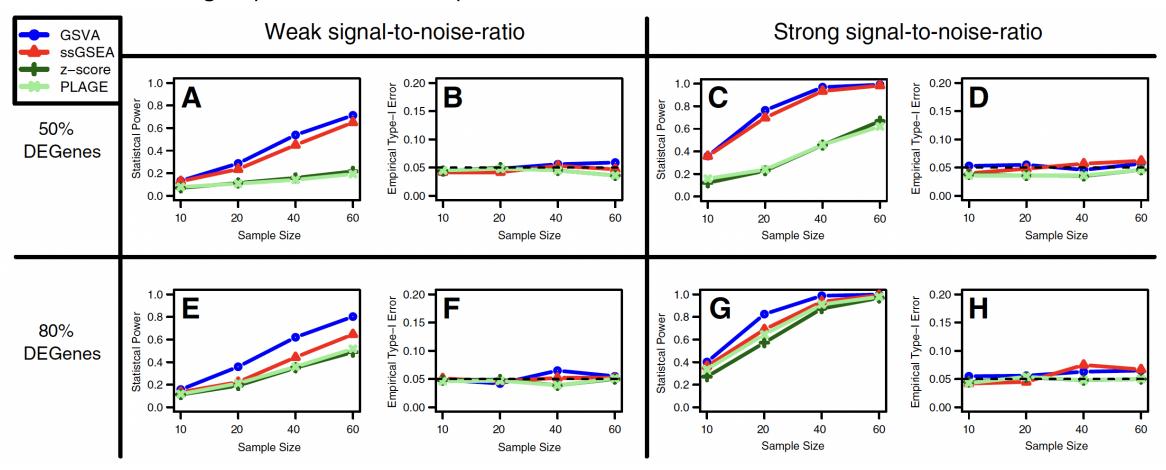
single-peaked/near-normal

Use ESdiff when you need model-friendly, stable scores (add ESmax sign for direction)

GSVA Shows Higher Power in Simulations

easier to detect, higher power, smaller sample size needed.

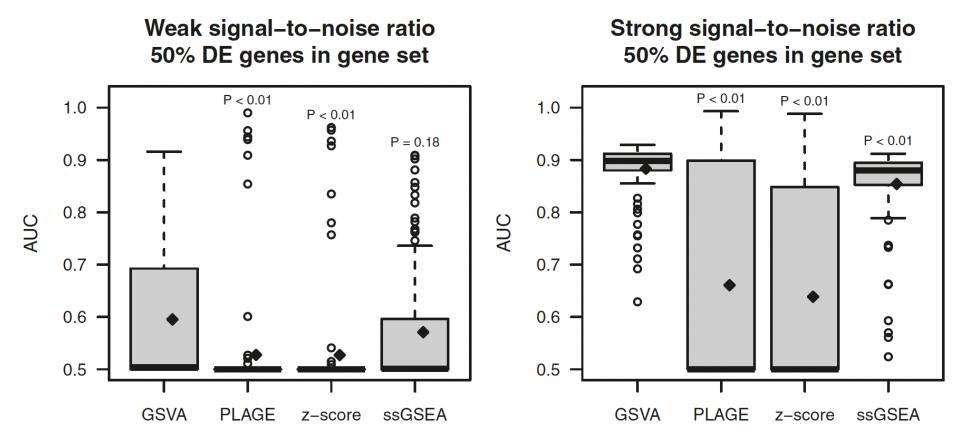
harder to detect, lower power, larger sample size needed.



- Power: chance to detect a real effect (1β) ; higher power = fewer missed true differences.
- Type-I error: chance of a false positive (α) ; often controlled at 0.05.

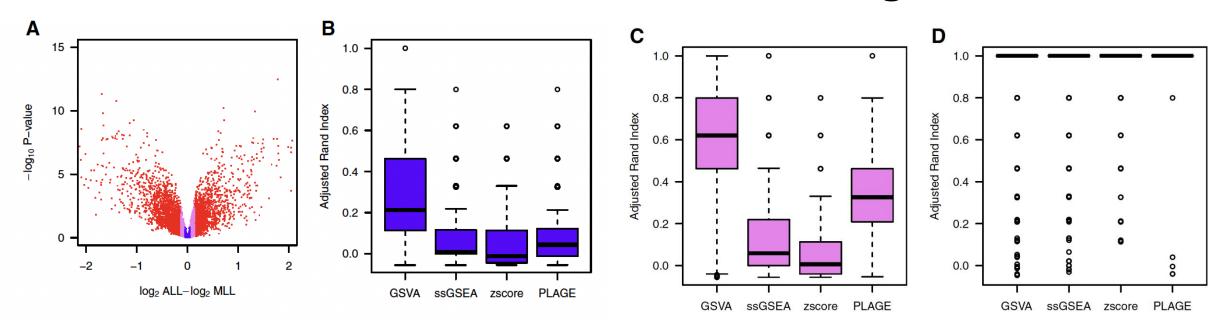
GSVA Delivers the Highest ROC curve AUC in Simulations

For each gene set, compare GSVA scores between the two groups using a two-sample t-test; use the **absolute t-statistic** | t |(or 1-p) as the ranking score to build the ROC and compute AUC.



- GSVA leads under weak signals (AUC significantly higher, P < 0.01).
- Under strong signals, methods converge; GSVA/ssGSEA remain top.
- Higher AUC means the method puts true positives ahead of nulls more reliably.

GSVA is more sensitive to weak/moderate signals in real data

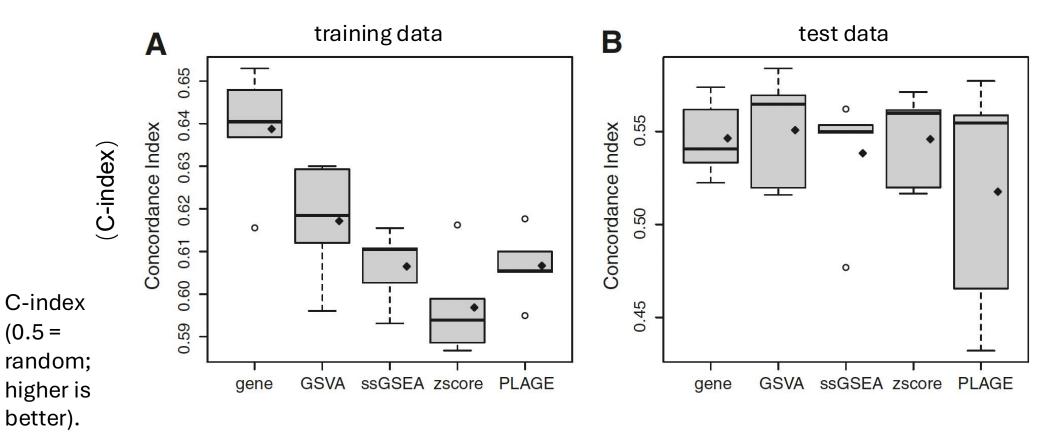


Rank all genes by fold change into three equal terciles: small, medium, and large effect. **Workflow:** fold-change stratification → bootstrap sampling (10 samples, repeat 1000 times → compute GSE scores → **limma** select top-5 gene sets → hierarchical clustering → **ARI** evaluation.

Adjusted Rand Index (ARI): How well a clustering matches the true groups (0–1; **1 = perfect**, **0 = like random**)

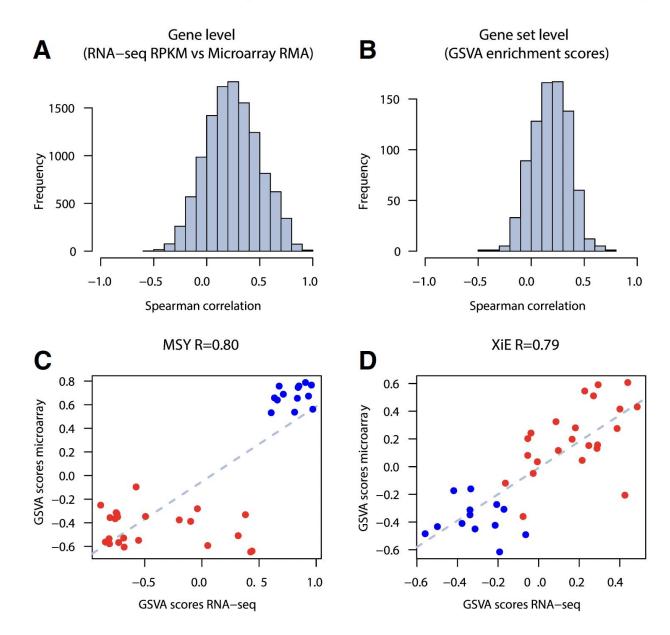
- Weak/medium signals: GSVA attains the highest ARI ($p \ll 0.01$).
- Strong signals: all methods are near ceiling; differences are smaller.

GSVA improves survival prediction in ovarian cancer



- Train (A): Gene looks best → likely overfitting.
- Test (B): GSVA/ssGSEA show higher C-index with smaller spread.

GSVA Cross-platform Consistency



- Pathway > gene correlation — GSVA aggregation is more stable.
- Sex signatures
 replicate MSY ↑ in
 males; XiE ↑ in females
- High agreement (R ≈ 0.8) GSVA scores are portable across technologies.

Conclusion

- •What GSVA is: Per-sample pathway scores via kernel-ECDF and KS-like running sum.
- •Sensitivity: Better at detecting weak/coordinated signals than ssGSEA/PLAGE/z-score (with controlled Type-I error).
- •Real data wins: Higher ARI (ALL vs MLL) and C-index (TCGA ovarian) vs alternatives.
- •Practical tips: Use ESdiff for modeling, ESmax for direction (ensure n>10, adjust batch/covariates, pre-filter coherent gene sets (size ~10–500)).