
The invention of spotting oligonucleotide probes at a 
high density to glass or nylon arrays1 almost two decades 
ago not only transformed the study of gene expression 
but also accelerated the advent of bioinformatics as a 
mainstream component of biology. The immobilization 
of probes from a reference genome rather than from the 
tested sample, as in northern blotting, and the miniaturi-
zation of this procedure allowed for the pre-fabrication 
of arrays that could be distributed and used for RNA 
assays on almost any sample anywhere. Many labora-
tories got their own instruments, and with the cost of 
commercial chips decreasing and protocols stabilizing, 
a new generation of laboratory technicians oversaw an 
explosion of its use.

Because the analysis of microarray data required 
more computational resources and expertise than low-
throughput technologies, data analysis and bioinformat-
ics became an integral part of every microarray-based 
study. Community efforts such as the formation of the 
Microarray Gene Expression Data (MGED) Society 
in 1999 (REF. 2) and the development of standardized 
vocabularies such as Gene Ontology (GO)3 set the stage 
for large-scale gene expression data sharing and use in 
research beyond the original experiment. Development 
of data analysis methods and environments such as 
Bioconductor4 benefited from the emergence of a com-
munity in which the early adopters of the experimental 
technique were also actively involved in bioinformatics. 
The adoption of the reporting requirement guidelines 
such as Minimum Information About a Microarray Experiment 

(MIAME)2 and the establishment of public reposito-
ries for microarray data — Gene Expression Omnibus 
(GEO) at the US National Center for Biotechnology 
Information (NCBI)5 and ArrayExpress at the European 
Bioinformatics Institute (EBI)6 — set the stage for gene 
expression data sharing and reuse. As of 2012, GEO 
and ArrayExpress contain data from more than 30,000  
studies with more than a million assays.

In recent years, high-throughput-sequencing-based gene 
expression assays (namely, RNA sequencing (RNA-seq))7  
have gradually been taking ground from the gene 
expression microarrays, although currently microarrays 
are still the main contributors of gene expression data to 
the public repositories.

In this Review, we discuss the range of gene expres-
sion databases and the various ways in which publicly 
archived gene expression data are being used in support 
of new studies, in combination with other data, in large 
meta-analyses or for refinement and processing to create  
added-value biology data resources. We highlight 
approaches that can be used and areas in which future 
developments would be useful.

Databases of gene expression data
Genome-wide gene expression data are now served 
through a large variety of resources, including primary 
archives, added-value databases and databases with a 
specific topical interest (for example, a disease, species 
or tissue). A selection of resources is provided below and 
summarized in TABLE 1.
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Microarray
A solid surface slide on which a 
collection of microscopic DNA 
spots representing specific 
DNA sequences of genomic 
regions are attached and to 
which sample DNA fragments 
can hybridize. Microarrays are 
used to measure the expression 
levels of large numbers of 
genes simultaneously, to 
genotype multiple regions  
of a genome or for other 
high-throughput assays.
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Abstract | Our understanding of gene expression has changed dramatically over the past 
decade, largely catalysed by technological developments. High-throughput experiments — 
microarrays and next-generation sequencing — have generated large amounts of 
genome-wide gene expression data that are collected in public archives. Added-value 
databases process, analyse and annotate these data further to make them accessible to 
every biologist. In this Review, we discuss the utility of the gene expression data that are 
in the public domain and how researchers are making use of these data. Reuse of public 
data can be very powerful, but there are many obstacles in data preparation and analysis  
and in the interpretation of the results. We will discuss these challenges and provide 
recommendations that we believe can improve the utility of such data.
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Table 1 | Data resources

Database Description URL Refs

Public repositories

ArrayExpress (from EBI) Any functional genomic data http://www.ebi.ac.uk/arrayexpress 8

Gene Expression Omnibus 
(GEO; from NCBI)

Any functional genomic data http://www.ncbi.nlm.nih.gov/geo 9

DDBJ Omics Archive Any functional genomic data http://trace.ddbj.nig.ac.jp/dor 10

Stanford Microarray 
Database

Any functional genomic data http://smd.stanford.edu 104

Added-value databases

Gene Expression Atlas Gene expression in different cell types, organism parts, 
developmental stages, disease states, sample treatments 
and other biological or experimental conditions

http://www.ebi.ac.uk/gxa 16

GeneChaser Differential expression http://genechaser.stanford.edu 17

BioGPS Tissue expression http://biogps.org 40

Genevestigator Commercial; wide range of data and analysis types https://www.genevestigator.com/gv 105

Gene Expression  
Barcode

Tissue expression http://barcode.luhs.org 18

Nextbio Commercial; wide range of data and analysis types http://www.nextbio.com

Topical databases

Oncomine Cancer http://www.oncomine.org 34

Pancreatic  
Expression DB

Pancreatic expression http://www.pancreasexpression.org 31

ParkDB Parkinson’s disease http://www2.cancer.ucl.ac.uk/Parkinson_Db2 32

ProfileChaser Expression similarity http://profilechaser.stanford.edu 26

PlexDB Plants http://www.plexdb.org 37

GXD Mice http://www.informatics.jax.org/expression.shtml 41

TFGD Tomatoes http://ted.bti.cornell.edu 38

miRGator microRNA http://mirgator.kobic.re.kr 28

COXPRESdb Multi-species comparisons http://coxpresdb.jp 25

OryzaExpress Rice; co-expression http://bioinf.mind.meiji.ac.jp/OryzaExpress 21

GDP Glaucoma http://glaucomadb.jax.org/glaucoma 33

aGEM Anatomical http://agem.cnb.csic.es 44

Atted-II Plants; co-expression http://atted.jp 22

ArraySearch Arabidopsis thaliana http://arraysearch.org 24

GUDMAP Genitourinary system http://www.gudmap.org 36

EMAGE Mouse in situ expression http://www.emouseatlas.org/emage 42

4DXpress Multi-species anatomical http://4dx.embl.de/4DXpress 43

GCOD Cancer http://compbio.dfci.harvard.edu/tgi/cgi-bin/
tucan/tucan.pl

35

Integrative databases

Wormbase Caenorhabditis elegans — genes, genomes,  
phenotypes, genetic variation, proteins,  
antibodies and developmental stages

http://www.wormbase.org 49

IntOGen Cancer — gene expression, copy number  
alteration and mutations

http://www.intogen.org 45

canSAR Cancer — gene expression, proteins, structures, 
interactions and compounds

http://cansar.icr.ac.uk 47

CMAP Drug response, gene expression and diseases http://www.broadinstitute.org/cmap 46

Cistrome Gene expression regulation by DNA-binding proteins http://cistrome.org 27

DDBJ, DNA Data Bank of Japan; EBI, European Bioinformatics Institute; NCBI, US National Center for Biotechnology Information.
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Minimum Information 
About a Microarray 
Experiment
(MIAME). A guideline for 
information that is necessary 
for the unambiguous 
interpretation of the results of 
the experiment, potentially 
allowing the reproduction of the 
experiment. MIAME postulates 
that raw and processed data, 
sample annotation, array 
feature annotation, relationship 
between the samples used in 
the experiment, arrays and data 
files, the overall description  
of the experiment and 
experimental variables must  
be given in a usable format to 
make the results of a microarray 
experiment interpretable.

Gene Expression Omnibus
(GEO). A public functional 
genomics data repository 
supporting MIAME-compliant 
data submissions at the US 
National Center for 
Biotechnology Information 
accepting array- and 
sequence-based data.

ArrayExpress
A MIAME-compliant archive of 
functional genomics data at 
the European Bioinformatics 
Institute. It is one of the 
international public data 
archives recommended by 
scientific journals for 
depositions of microarray or 
high-throughput sequencing 
data related to publications.

High-throughput 
sequencing
DNA sequencing technologies 
that parallelize the sequencing 
operations, thus achieving 
several magnitudes higher 
throughput than the traditional 
sequencing methods based on 
processes invented by Fred 
Sanger.

RNA sequencing
(RNA-seq). The use of 
high-throughput sequencing 
technologies applied to cDNA 
molecules obtained by reverse 
transcription from RNA, or 
sequencing RNA directly, in 
order to get information about 
the RNA content of a sample.

Meta-analysis
Refers to methods focused on 
contrasting and combining 
results from different studies to 
identify common patterns and 
improving the signal in data by 
combining multiple studies.

Primary archives. Primary archives serve as repositories 
for most types of gene expression and other functional 
genomic data that typically relate to publications in 
peer-reviewed journals. Many major journals, includ-
ing Science and Nature Publishing Group journals, now 
require MIAME-compliant data submissions to one of 
the international data archives — ArrayExpress at EBI8, 
GEO at NCBI9 and DNA Data Bank of Japan (DDBJ) 
Omics Archive10 — before the final acceptance of the 
manuscript (even though MIAME compliance is not 
rigorously enforced). A recent study estimated that 25% 
of all published microarray studies deposited their data 
in a public archive and that the trend was increasing 
so that for recent studies, the corresponding number 
is approximately 45%11. Although most of the content 
in the archives is made up from microarray data, next-
generation sequencing experiments, such as RNA-seq, 
are rapidly gaining in prominence, constituting 15% of 
new experiments (that is, studies) submitted in 2012, as 
compared to 8.0% in 2011 and 3.4% in 2009.

ArrayExpress data reveal that one-third of gene 
expression experiments that are currently available in 
public archives are human studies and approximately 
one-quarter of the data are from mice. The contribu-
tion from plant studies is less than 20%, most of which 
are from Arabidopsis thaliana. The average size of a 
microarray experiment is just below 30 assays (that 
is, arrays) per published study, and this has not sub-
stantially increased over the past 5 years. The size  
of individual experiments vary widely: the number of 
studies containing more than 1,000 assays has increased 
considerably over the past few years, and this number 
includes large-scale experiments in which gene expres-
sion and genotyping array studies are combined. The 
size of a typical RNA-seq experiment is still consider-
ably smaller, just over ten assays per experiment, most 
likely owing to the higher cost. Currently, researchers 
seem to be choosing RNA-seq technology mainly to 
study questions such as new transcript discovery, gene 
structure or allele-specific expression, whereas micro-
arrays are still the tool of choice in experiments that 
require larger number of samples. In this Review, we 
mainly focus on ArrayExpress data, but given that the 
ArrayExpress database imports most of the data that 
are in GEO12, we believe these numbers are representa-
tive of the general trends. For comparisons, we refer to 
the citations listing, in which GEO tracks citations from 
depositions and third-party data usage.

Gene expression data are most useful in the context 
of other molecular data, such as genotype data, DNA 
methylation data and protein expression data. Such 
so-called multi-omics experiments, in which the same 
sample is studied by several methods, are becoming 
increasingly popular. In the primary archives, there 
are efforts to link multi-omics data from the same  
sample in different repositories through centralized 
BioSample databases at NCBI13 and EBI14 so that a user 
can easily get access to all of the related data sets.

In 2011, data from approximately 800 new experi-
ments were directly submitted to ArrayExpress, com-
prising more than 20,000 assays and 200 GB of data. 

During the same period, 50 GB of data were down-
loaded from ArrayExpress daily, and the database was 
accessed from more than 30,000 unique Internet proto-
col (IP) addresses every month. The database is there-
fore accessed by approximately 1,000 different users 
daily, each of whom download 50 MB of data, which is 
roughly one-quarter of an experiment. To use data from  
primary archives, a certain expertise in bioinformatics  
is needed — raw or processed data must be down-
loaded, and various data analysis environments, such 
as Bioconductor, must be used to analyse these data 
either independently or in combination with their 
own data. Added-value databases make the biological 
content of the expression data more accessible to non- 
bioinformaticians and are among the most important 
consumers of primary data archives.

Added-value databases. Added-value databases extract 
information from primary data to answer questions such 
as ‘in which samples is a particular gene expressed?’ or 
‘which genes are differentially expressed between the 
normal state and a particular disease state?’ and make 
the answers available through user interfaces that are  
tailor-made for genes, diseases or other direct biologi-
cal or biomedical questions (TABLE 1). The added value 
comes from data processing, additional annotation, 
mapping to standardized vocabularies or ontologies 
(such as the Experimental Factor Ontology15) and analy-
sis to extract gene expression profiles and other results 
from primary data. The quality of the analysis and the 
power to combine many samples depends on the degree, 
quality and standardization and harmonization of sam-
ple and experiment information provided by the original 
submitters and added by curators. The more effort that is 
put into data mining and annotation, the more potential 
the database has to contain useful information.

At the EBI, the Gene Expression Atlas is one of the 
largest added-value gene expression databases, currently 
containing data from more than 3,000 studies from 
the ArrayExpress archive16. These studies cover nearly 
100,000 assays that are mostly microarray-based but 
that also include data from more than 50 different RNA-
seq-based studies. The Gene Expression Atlas allows 
the user to make queries such as ‘in which conditions 
is gene X significantly differentially expressed?’, ‘which 
genes are overexpressed in lung cancer?’ or a combina-
tion of such questions. A similar approach is taken in 
GeneChaser17, in which the user can retrieve, for a given 
gene, a ranked list of differential expression comparisons 
between experimental conditions from a large number 
of public experiments. Absolute expression is addressed 
by the Gene Expression Barcode algorithm18,19, which 
uses large sets of experiments from public archives to 
estimate gene-specific background distributions for 
three commonly used array types and to call genes as 
expressed or not expressed in different cell types or in 
uploaded data files.

A different set of added-value databases focuses on 
serving information about gene expression regulation, 
either derived by inferring networks from gene expres-
sion data or by focusing on experiments that directly 
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Normalization
In relation to microarray and 
other high-throughput data, 
normalization usually refers to 
data transformations that 
remove systematic noise and 
that make data combined from 
several assays mutually 
comparable.

measure interactions or regulatory features. For example, 
co-expression network databases are available for bar-
ley20, rice (OryzaExpress)21, A. thaliana22,23,24 and other 
species (COXPRESDB)25. ProfileChaser26 allows query-
ing to find whole data sets with differential expression 
patterns that are similar to the patterns in an experiment 
of interest. Databases that specifically query experi-
ments that provide interaction information include 
Cistrome, which is based on chromatin immunopre-
cipitation followed by microarray (ChIP–chip) data and  
ChIP followed by high-throughput sequencing (ChIP–seq)  
data27 and miRGator for microRNA expression and its 
regulation of mRNA28. Another different type of added 
value to public data is provided by M2DB29, which allows 
the user to query sample groups and conditions across 
a large set of public experiments and prepares the data 
for meta-analysis, including normalization, filtering out 
low-quality arrays, providing statistics for meta-analysis  
and combining arrays to a single large data matrix.

Topical databases. A different class of databases extracts 
and analyses expression data only for a certain sample 
domain, such as the Pancreatic Expression Database30,31, 
the Parkinson’s disease gene expression database 
(ParkDB)32, the Glaucoma Discovery Platform33, 
Oncomine34 and GCOD35 for cancer data sets and 
GUDMAP for the genitourinary system36. Sometimes, 
these topical databases also take their own submissions, 
directly importing studies from contributing research 
teams. In particular, topical databases for specific 
species are important and benefit from curators who 
have highly specialized expertise in the domain of the 
database. For example, functional genomics in plants 
is served by several databases, such as PLEXdb for 
various plant species37 or TFGD specifically for tomato 
data38. A well-known topical database is the Symatlas 
from the Genomics Institute of the Novartis Research 
Foundation, which is entirely based on two microarray-
based studies of gene expression across 79 human and 
61 mouse tissues39 that have now become a resource 
provided through the BioGPS portal40.

A particular type of topical database focuses on 
anatomical mapping of gene expression or expression 
data from in situ experiments, including images from 
tissue stainings. The mouse community is served by 
the Mouse Genome Informatics group at The Jackson 
Laboratory, which maintains a database of in  situ 
data for gene expression during mouse development 
called GXD41. It is linked to EMAGE, the Edinburgh 
Mouse Atlas42, which stores imaging data for develop-
mental stages in mice. Data for zebrafish, Drosophila  
melanogaster, medaka and mice are stored in 4DXpress43, 
which allows searches for genes, developmental stage and 
anatomical structure that are specific for these species.  
aGEM44 integrates data from several such sources for 
mice and humans.

Integrated resources. Many databases add value by inte-
grating public expression data with other data types, 
such as genetic or functional annotation, pathways 
and networks, phenotypes, genome annotation, drug 

interactions, anatomical information and literature-
based text mining. For example, IntOGen combines 
expression data and genomic alteration data for can-
cer45. The Connectivity Map46 uses microarray data  
to integrate drug response and disease, whereas can-
SAR47 integrates data from sources as wide as gene 
expression, drug response, protein interactions and 
protein three-dimensional structure. Large collections 
of public data have also been used to build a framework 
for diagnosing disease on the basis of a gene expression 
profile from a patient48. Other databases function as 
portals for many types of data for a specific domain 
or species, including WormBase49 and the Mouse 
Genome Informatics (MGI) resources at The Jackson 
Laboratory; these link external data sources or retrieve 
the data directly.

Annotation, standards and access control
In 2009, Ioannides and colleagues50 attempted to rep-
licate the finding of 18 microarray-based studies 
published in Nature Genetics during 2005–2006. The 
authors replicated two studies ‘in principle’ and six 
‘partially’, whereas ten were not reproduced, despite the 
fact that all were submitted and retrieved from GEO or 
ArrayExpress. The main reason for the lack of reproduc-
ibility was the unavailability of all relevant data or meta-
data: that is, a lack of MIAME compliance. The authors 
concluded that the repeatability of published microar-
ray studies is apparently limited and recommended that 
more strict publication rules enforcing public data avail-
ability and explicit description of data processing and 
analysis should be considered.

The Ioannides50 study brought deserved attention to 
the importance of metadata. To analyse a data set and 
to draw any conclusions from the results, we need to 
know what the samples were, how they were prepared 
and how the experiment was designed and carried out. 
Today, some of the issues identified in this study have 
been addressed. For instance, we now see almost 100% 
of new experiment submissions to ArrayExpress pro-
viding raw data and improved completeness in provid-
ing protocols. Nevertheless, annotation of samples and  
experimental conditions are often still minimal.

The ability to test the reproducibility of large-scale 
studies is particularly important if such data are to be 
used in clinical practice or trials. An extreme case of 
failure is a recent clinical trial that was initiated on the 
basis of microarray studies of gene expression in cancer 
cell lines; the trial was stopped51 only after independent 
researchers failed to reproduce the findings of the origi-
nal studies52 and found serious errors in the analysis. 
This case exemplifies the importance of public archives 
as vehicles to facilitate reproducible research and empha-
sizes the need for MIAME compliance and, in particular, 
sufficient annotation of experimental and computational 
methods. Recently, there have been calls to submit for 
scrutiny not only the raw data but also the code used in 
the analysis53.

Ensuring that sufficient metadata are provided to 
make gene expression data reusable and results repro-
ducible is a hard problem to deal with: more stringent 
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Minimum Information 
about a Sequencing 
Experiment
(MINSEQE). A formulation  
of the information that is 
necessary to interpret the 
results of a sequencing 
experiment unambiguously 
and potentially to reproduce 
the experiment. MINSEQE  
is an adoption of Minimum 
Information About a 
Microarray Experiment 
guidelines to functional 
genomics experiments based 
on RNA sequencing and other 
high-throughput-sequencing-
based functional genomics 
experiments.

requirements for detail in submissions often result in 
fewer experiments being submitted. Often, the per-
son submitting a data set is different from the person 
designing and carrying out an experiment; for example, 
the person submitting the data may be the group bio-
informatician who does not necessarily have full knowl-
edge of all the experiment details. Required fields will 
be filled in, but this also increases the risk of errors in 
annotation, and these are harder to spot and more dif-
ficult to address than absence of annotation and blank 
fields. We believe that the best way to improve this is 
by providing tools that help researchers to annotate 
their experiments easily. Thus, annotation and data 
management tools such as Annotare54, ISA-creator55 
and others56 are likely to have a positive impact on data 
reusability and reproducibility of results.

For microarray data, the MIAME standards are 
well-established, even though they are not rigorously 
enforced, but the reporting standards for sequencing-
based gene expression data (obtained by RNA-seq) are  
almost non-existent. Guidelines for RNA-seq data 
submissions — called Minimum Information about 
Sequencing Experiments (MINSEQE; BOX 1) — that 
are similar to the MIAME standard have been pro-
posed by the Functional Genomics Data Society, but 
we are not aware of any journal that has formally 
adopted them. There may be several reasons for this: 
first, high-throughput sequencing is used in so many 
different ways that it is not always obvious whether 
MINSEQE guidelines are applicable to the particular 
study (by contrast, in the early days of microrrays, the 
applications almost exclusively concerned differential 
gene expression); second, as raw RNA-seq data may 
identify the individuals, for human data, legal restric-
tions may apply, and unfortunately these are some-
times used as an excuse not to provide data. However, 
these problems are not insurmountable, and the jour-
nals should be encouraged to adopt MINSEQE and 
other relevant guidelines to prevent valuable data 
from being lost.

Using third-party gene expression data
There are three main types of use for public gene expres-
sion data in research: to study a biological question; to 
develop and evaluate a new method; and to integrate, 
annotate and analyse primary data in order to build a 
new (added-value) data resource. Arguably, the develop-
ment of new methods and the building of added-value 
resources have the most value if they help in the study 
of biological questions. It is a difficult problem to esti-
mate third-party usage of public data and its impact on 
new research. One study estimated that every ten data 
sets submitted to GEO contribute to four new papers 
in the 3 years following deposition57. To assess how 
archived gene expression data have recently been used, 
we analysed publications from 2011 that either tagged 
‘ArrayExpress’ or cited any of the five ArrayExpress 
publications in the Nucleic Acid Research journal 
database issues6,58,59,60,8. This approach was chosen  
to find a large enough number of studies using pub-
lic archive data that we could easily trace. We filtered 
to exclude papers that did not directly use data, and 
this yielded 90 studies that we categorized by how they 
used the data (listed in Supplementary information S1 
(table)). A summary of the results of this analysis is 
presented in BOX 2. Although we selected papers that 
used ArrayExpress data, we expect that similar results 
would be found from similar analyses for GEO, because 
of the large degree of overlap and data sharing between 
the resources or other large public gene expression 
databases.

When data are reused, the original study that has 
generated the data appears to be almost always credited 
in some way, but there are no easy ways to assess the 
accumulated reuse of data by third-party added-value 
databases. We also note that fairly few studies using 
archived data cite the primary archive itself. Therefore, 
as indicated by the download statistics mentioned 
above and by anecdotal evidence from publications  
reusing expression data (BOX 2), the total number of 
studies in 2011 that reused even just ArrayExpress  

Box 1 | Minimum Information about a Sequencing Experiment

By following the Minimum Information about a 
Sequencing Experiment (MINSEQE) recommendations, 
authors and publishers can greatly facilitate the potential 
reusability value of a next-generation-sequencing data set. 
The six cornerstones of MINSEQE (see the figure) are the 
provision of:
•	A scientific overview of the study, including publications 

and contact information;

•	The study design, with the relationship between samples 
and data files, and explicit declaration of the intended experimental variables;

•	Sample information, describing the biomaterial and the experimental conditions for which they were studied;

•	Protocols for sample treatment, library preparation and the sequencing run, as well as protocols for data processing  
and alignments;

•	The raw sequencing reads, including quality scores;

•	The processed data produced and analysed for the concluding results of a study, such as tables of expression estimates 
or raw counts for the genes (or other biological features) considered, including information about which reference 
sequences and corresponding feature annotation were used.

Nature Reviews | Genetics
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data is likely to be much larger than the 90 papers that 
we considered. We believe that this is because the large 
archives have become ubiquitous for finding public 
data, and they are not referenced themselves even when 
considerable parts of a study or resource are based on 
data obtained from them. As long as the data them-
selves are traceable by accession number for the sake 
of reproducibility and credit to the original submit-
ters, we do not see this as a problem. It has been sug-
gested that using digital object identifiers (DOIs) may 
help to improve tracking the use of primary data and  
acknowledging their authors.

Reusing public data as a basis for new biological studies:  
raw data. In our survey, nearly one in four studies used 
public data to address a biological problem without 
generating new data from samples. Such studies draw 
on the power in numbers: by combining many data 

sets, the power to detect weak signals is improved, and 
the large quantity of samples already assayed in condi-
tions that are relevant to the biological question would 
often be costly and time consuming to obtain in a single 
laboratory. Data can be combined at the quantitative 
raw data level or by a meta-analysis that combines, for 
all participating studies, effect sizes or statistical sig-
nificance levels between sample groups or simply the  
resulting gene lists.

Combining data from different studies at the raw 
data level is not straightforward, as biases — for exam-
ple, from probe sequence, array platform and labora-
tory effects — can have a strong impact on the data. 
Therefore, combining and normalizing raw probe level 
data across array platforms can be done only if such 
biases are accounted for61. Combining raw data from 
the same platform is more straightforward. A pipeline 
for combining raw data is described in BOX 3.

Box 2 | The use of ArrayExpress data in 2011

We retrieved and analysed publications that had used public 
gene expression data from ArrayExpress Archive. We studied 
two independent samples of such recent publications in 
different ways.

First, using Thomson ISI Web of Knowledge, we retrieved  
all publications in 2011 that cited one of the five ArrayExpress 
publications in the Nucleic Acid Research journal database 
issues6,8,58,59,60. This gave 128 citations. By reading these 
publications, we concluded that 90 of them used data for 
research (listed in Supplementary information S1 (table)), 
whereas of the remaining 38 papers, 20 were reviews, 8 
reported data submissions, and 10 cited ArrayExpress in a 
different context. From the 90 papers using ArrayExpress 
data, we concluded that 27 were technical in nature (shades 
of green in the figure). Of these, 15 were used the data for 
algorithm development, 8 used the data for tool 
development, and 4 used ArrayExpress metadata (for 
example, for ontology-related developments) without using 
the actual data. We found that 25 publications reported 
databases of biological information built by processing data 
collected from ArrayExpress and other primary archives (red 
in the figure). We judged that 38 publications (42%) 
concentrated on biological questions (shades of blue in the 
figure). Of these publications, 18 were experimentally driven 
and used archive data for replication or confirmation in 
independent data set; 20 were computationally driven and 
carried out reanalysis by combined- or meta-analysis of 
existing data sets.

We also wanted to assess how often publications using 
ArrayExpress data cited any ArrayExpress publications. To  
achieve this, we scanned through the titles of publications 
that have generated alerts from CiteTrack on a keyword 
‘ArrayExpress’	over	the	past	12 months.	From	this,	we	
retrieved 30 papers with titles that suggested that the data 
might have been used for studies of biological questions.  
We searched for ‘ArrayExpress’ in the full text and tried to 
determine whether indeed ArrayExpress data had been used. 
In this way, we found 12 publications that had used data,  
only 4 of which cited an ArrayExpress publication. We also 
found that four of these used ArrayExpress data in 
combination with newly generated data, whereas eight based 
their conclusions entirely on pre-existing public data.
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Global analyses of combined sets of raw data can be 
used to draw conclusions about the general properties of 
expression in large sample groups, such as broad tran-
scriptional patterns. For example, one study combined 
5,372 arrays from 369 different sample type categories 
and used principal component analysis (PCA) and clus-
ter analysis to find global transcriptome patterns62. This 
showed blood cells and solid tissue as the main axis of 
segregation, with normal or neoplastic sample charac-
teristics on the second principal axis. It also revealed 
that most cell line transcriptomes are broadly similar 
to each other and different from the respective primary 
tissues. A study of 3,030 samples from the Affymetrix 
HG-U133+2 platform similarly showed segregation 
between blood-derived cells and solid tissue, alongside 
the brain as a third group63.

A data set of 81 samples from white blood cells 
and 1,463 samples from other organs measured on the 

Affymetrix HG-U133A platform was used to study 
correspondence in expression between the two tissue 
groups64. It showed that large portions of the transcrip-
tome of white blood cells resemble those of other organs, 
which is consistent with observations that most genes are 
expressed in most tissues and that only a small fraction 
of the genes significantly change their expression level62. 
A similar study used expression data to estimate the tis-
sue of origin for metastatic tumours with unknown pri-
mary site, using classifiers trained from 5,577 samples 
from 56 cancer types and 1,667 normal samples from 44 
tissues65. Studies such as these show that large data sets 
covering a diverse set of sample types and experimen-
tal conditions can be extremely powerful in addressing 
questions for which the global transcriptomic profile is a 
relevant measurement for comparing cellular states. The 
larger the data set and the more diverse the conditions, 
the more ‘state space’ of expression is sampled. Similar 
analyses have been used to compare global gene expres-
sion patterns in different species. For example, a study 
with cross-experiment normalized data both for mice  
and for humans showed that orthologous genes in  
mice and humans show similar patterns of tissue  
specificity for global gene expression66.

Reusing public data as a basis for new biological studies: 
meta-analysis of summary data. Summary-level data, 
such as P values or effect sizes from compared condi-
tions, can be combined in meta-analyses. Such analysis is 
the most popular way of using third-party data because 
of the flexibility to include data from many different 
array platforms. Meta-analysis of gene expression has 
been applied to a wide range of biological questions 
using the combined power of thousands of samples. An 
increasing number of new studies rely on meta-analysis 
of public data sets for the detection of signals that could 
not be found in any of the individual data sets. Such 
meta-analysis studies and their methods have been com-
prehensively reviewed elsewhere67,68,69, and a summary of 
the steps for such analysis is presented in BOX 4.

For example, a study on Down’s syndrome com-
bined case–control data from 45 experiments to 
determine a set of 324 differentially expressed genes, 
of which 79 had potential neurocognitive effects70. In 
the context of cancer, a study combined 28 microar-
ray data sets from prostate, bladder and renal cancers 
(from ArrayExpress, GEO and Oncomine) to detect 
urinary biomarkers specific for prostate cancer71. Other 
examples include a study of 892 breast cancer samples 
from ten data sets with poor or good prognosis that 
demonstrated the importance of tumour subtyping for 
prognosis72, identification of genes involved in metas-
tasis and hypoxia73 and identification of enzyme gene 
regulatory interactions74. Such studies demonstrate 
the power in using public data for the discovery of sig-
nals that are too weak to be detected in a single new 
experiment.

Both meta-analysis of summary results and merging 
of raw data to construct large combined data sets are 
used for the detection of weak signals. Which of the two 
approaches is used largely depends on the experiments 

Box 3 | Reuse of raw data

Briefly, these are the steps that need to be considered in a reanalysis using raw data 
for any scenario in which a number of experiments have been identified, all raw  
data files and annotation files have been downloaded, and raw data combination 
rather than summary data meta-analysis is desired. Be aware of probe and study 
effects and avoid merging data from different array platforms unless much attention 
is given to cross-platform issues.

Quality control. Public archives store data as they have been received from the 
submitter. As for studies generating original data, only arrays that pass quality-control 
criteria should be included in further analysis. This can be done by the Bioconductor 
ArrayQualityMetrics package102, for example. Also be aware that some studies, often 
from the same laboratory, contain identical raw data files, such as when a set of control 
samples has been used independently in two different studies.

Revise annotation. Because the annotation of public data can be incomplete,  
and because different studies often use different terms to annotate samples and 
experimental factors, it is important to revise annotation by going back to the 
original studies. If possible, annotations can be added, and you can check which 
samples have been prepared with comparable protocols and subjected to 
comparable experimental conditions.

Array selection. Experiments that reuse data need just as much design, if not more,  
as those experiments that generate new data. Include only arrays in the study that 
address the intended question. It may leave you with fewer arrays than if all are 
included, but by excluding non-informative arrays, you will decrease the data 
heterogeneity and improve the conditions for accurate statistical tests concerning 
the goal of the study.

Define and annotate probe sets. The default feature on most microarrays is the probe 
set: a collection of short oligonucleotide probes that all target the same transcript. 
Different platforms, and sometimes even different versions of arrays, may define probe 
sets or the individual probe sequences differently, and original manufacturer 
annotation may be outdated. This may have a serious impact on the data analysis. In 
general, it is a good idea to make sure that annotations are updated and that probe sets 
target the right transcriptome feature. The Bioconductor package CustomCDF can be 
used to update probe set annotation, to build unique gene level probe sets, to remove 
ambiguously mapped probes and also to remove individual probes targeting 
sequence-covering single-nucleotide polymorphisms (SNPs), which could cause a 
matching probe to be a mismatch for many samples103.

Normalize and analyse across all arrays and experimental conditions as if it were a 
single data set. Cross-platform normalization needs special attention and should be 
dealt with carefully, or the biases introduced may outweigh the benefit of combining 
many samples. In downstream analysis, adjusting for study effect and other biases 
may be necessary.

R E V I E W S

NATURE REVIEWS | GENETICS  ADVANCE ONLINE PUBLICATION | 7

© 2012 Macmillan Publishers Limited. All rights reserved



that the researcher has identified to be informative. In 
particular, meta-analysis is powerful when the question 
can be addressed by statistical tests on comparable con-
ditions in each of the data sets. For example, two stud-
ies that include liver samples from healthy individuals 
and those with a specific disease could be well-suited 
for a meta-analysis considering differential expression in 
healthy versus disease states. However, if the individuals 
with disease were on medication in the first experiment 
but not in the second, the two groups of samples with 
disease would not be completely comparable because 
of the confounding effect of the drug. Such differences 
between sample treatments in different experiments are 
almost unavoidable or may not be strongly biasing for 
the intended question. The degree of heterogeneity can 
be estimated by using, for example, Cochran’s Q statis-
tic75, and the analysis can be adjusted accordingly. There 
are a number of R or Bioconductor packages for meta-
analysis: for example, the MetaOmics suite76, metaMA77, 
GeneMeta78 and MetaArray79.

Supporting data for new experimental studies. In 
approximately 25% of the studies that we reviewed, the 
data from public resources were used in combination 
with new data, typically to provide a replication set from 
an independent source. In such an approach, a single 
data set or a meta-analysis of a group of data sets can be 
used. Examples of the studies include investigation of 
gene and protein interaction networks80,81,82, regulatory 
mechanisms in cancer83,84,85, co-expression and tran-
scription regulation in plants86,87 and gene evolution in 
A. thaliana88. The analysis methods are often straight-
forward and comparable to those that were applied when 
the data were analysed in the original studies.

Sometimes public data are combined with newly gen-
erated data to increase the number of samples covered. 
For example, a study addressing differences between 
colon and rectum tumours combined data from a newly 
generated set of expression data from 284 samples with 
two public data sets covering 276 samples, to demon-
strate small but consistent differences in gene expression 
profile between the two sites89.

Merging raw data and normalizing across many data 
sets on the same platform can, as we have shown, result 
in studies addressing gene expression at the sample level 
for a large number of samples and conditions. But it is 
important to bear in mind that normalization across raw 
data from many experiments does not guarantee that 
batch or laboratory effects across different studies are 
eliminated, and for better control of between-laboratory 
heterogeneity, summary-level meta-analysis is often a 
better option.

Evaluating analysis methods. When assessing the per-
formance of a newly developed software tool or statis-
tical method, public data archives can provide ample 
material for testing. Algorithms that use archived data 
for performance evaluation address, for example, funda-
mental methods of array data processing and transcript 
quantification61, regulatory mechanisms90,91,92, gene func-
tion93, RNA interference effects94, cancer prognosis95, 
gene ranking96 or differential expression97. However, it 
is not always easy to assess the value of a new method in 
terms of providing biological insights. For instance, new 
methods that simply work faster may become valuable at 
some later time when the amount of data to be analysed 
has substantially increased. Therefore, it would be unfair 
to question the value of a new method just because it has 
not immediately provided a new biological result.

It should also be pointed out that a rich source of 
experiments to use for method evaluation is not all that 
is needed. Often, it is not straightforward to determine 
standards with which methods can be compared, and 
although a method may be deemed to be superior over 
others using some criteria for a given data set, a change 
of test set could lead to different conclusions. In particu-
lar, this is the case for small sample test sets98 and may be 
addressed by using a large number of test data sets and a 
diverse array of experimental parameters.

Reuse of RNA-sequencing data
Maximizing reuse of sequencing-based gene expres-
sion data can have an even greater impact than reus-
ing microarray data. The probe effect in microarrays 

Box 4 | Meta-analysis of summary-level data

Meta-analysis of summary-level data, such as P value, effect size or gene rank, is well-suited for the analysis of data from 
experiments that address the same specific test scenario (such as genes that are differentially expressed between sample 
states A and B). It is also recommended when the included studies are done on different array platforms. For a more 
detailed discussion of meta-analysis and of software packages implementing the analysis, we refer to the studies cited in 
the main text. The main steps in meta-analysis of summary-level data are schematically as follows.

Quality control, annotation revision, array selection and probe set definition and annotation. These steps are carried 
out in the same manner as when raw data are combined (BOX 3).

Normalization. Each data set is individually normalized.

Summary statistics. For each experiment, calculate summary-level statistics for each gene, including a measure of effect 
size (such as fold change) and significance (P value).

Estimate heterogeneity and combine summary-level data. Typically, P values are log-transformed, summed and 
weighted by the number of samples in the contributing experiment and its fraction of the entire combination. Effect 
size combinations either assume a fixed-effects model, in which there is a true effect size constant across experiments,  
with added measurement noise, or a random effects model, which treats the effect size as a random variable with 
heterogeneity between experiments.
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ELIXIR
A life sciences infrastructure 
project that unites Europe’s 
leading life sciences 
organizations in managing  
and safeguarding the massive 
amounts of data being 
generated every day by 
publicly funded research.

(described above) makes comparison of expression 
levels of different genes in the same sample difficult, if 
not impossible. Therefore, microarray experiments are 
primarily used only to compare the expression of the 
same gene across different samples. This makes the pos-
sibilities for integration of microarray data sets rather 
limited, even when these data are generated on the same 
microarray platform. In sequencing-based technologies, 
the probe effects are avoided, so it is possible to some 
degree to assess and to compare the absolute expression 
levels of different genes in the same sample. Moreover, 
after a simple normalization, such as ‘reads per kilobase 
per megabase of reads’ (RPKM or FPKM for pair-end 
RNA-seq), these data are to some degree comparable 
quantitatively across different studies. However, this is 
not universally accepted, as high-throughput sequenc-
ing suffers from other well-documented biases, such as 
nucleotide sequence bias, owing to the priming method, 
variation in PCR amplification depending on GC con-
tent and transcript length bias99. It is also not clear how 
RPKM values from experiments with different sequenc-
ing depth can be combined. Nevertheless, an optimistic 
view on RNA-seq technology is that as it develops, abso-
lute measurements of gene expression levels will become 
possible. If so, the reusability and cross-study integration 
of such gene expression will be fairly straightforward if 
sufficient metadata are available. An illustrative exam-
ple of a study that reused RNA-seq data is one in which 
gene expression in human populations was analysed to 
estimate alternative splicing variability and compare that 
to gene expression variability in the same populations100.

However, protocols and methods for RNA-seq data 
generation and analysis are still rapidly developing and 
changing, making the reuse or combination of sequenc-
ing data sets non-trivial. The many parameters in the 
protocols for library preparation and sequencing, such 
as the methods for priming, fragmentation or amplifica-
tion, have strong effects, and experiments that use dif-
ferent protocols should be carefully controlled for the 
effects of such differences if combined. Until RNA-seq 
data generation and analysis protocols become reli-
able and are standardized, it is necessary to archive raw 
data. The required storage capacity, and the associated 
cost, is magnitudes larger than for raw microarray data. 
However, we also note that the raw data volumes gen-
erated by RNA-seq are much smaller than the volumes 
of data generated from whole-genome sequencing, and 
thus on the overall scale of sequence data archiving, 
RNA-seq storage constitutes a fairly small problem.

As raw RNA-seq data can identify the donor, human 
sequence-based gene expression data sets are usu-
ally available under controlled access through dbGAP 
at NCBI101 and at the European Genome–Phenome 
Archive (EGA) at EBI. Cases in which a broad con-
sent has been given by the subject, such as in the 1000 
Genomes Project, are exceptions. This should not pre-
vent journals from requiring that additionally processed, 
de-identified data (for example, gene or transcript 
expression levels) are deposited at GEO or ArrayExpress 
together with essential sample annotation that cannot 
identify the individuals.

Conclusions
Gene expression data from public archives are now 
widely used in research. Use of raw expression data is not 
straightforward, and therefore secondary added-value 
databases are making these data accessible to the wider 
life sciences community. The reproducibility of high-
throughput gene expression studies from data deposited 
in the archives is still limited, largely owing to the lack of 
sufficient annotation. The public data are often used in 
combination with new data generated by researchers but 
are also analysed on their own often to address questions 
different from those posed in the original studies. Large-
scale analysis of combined data sets has provided new 
biological insights, which could not be obtained from 
the individual studies. The full extent of use of public 
expression data is difficult to assess, as it is often used 
through queries to added-value databases and without 
citing the database.

Currently, the field of gene expression studies is 
undergoing a major change by switching from micro-
arrays to high-throughput-sequencing-based gene 
expression assays. Although microarrays are still  
the main contributor to public gene expression data, the 
contribution of RNA-seq to the public data is growing 
rapidly. Will the promises of RNA-seq to provide more 
quantitative absolute gene expression measurements 
materialize, and will this further increase the reusability 
of data? We think that this will require not only technol-
ogy advances towards higher reproducibility but also 
a cultural change. Currently, it seems to be a pattern 
that every major publication about sequencing-based 
gene expression comes with a new data set, even if it 
addresses a question that is similar to the one for which 
an existing data set has been already generated. This 
may partly be a consequence of a rapidly developing 
technology; an unstated goal of the publication might 
be the technology development and testing rather than 
the biological result. However, this may partly be a tra-
dition in biology as an experimental science; reanalysis 
of an existing data set is still a fairly new phenomenon 
in biology, and it is possible that many reviewers or 
journal editors simply cannot believe that there may be 
important new discoveries based on data already pub-
lished. Clearly, specific biological questions require the 
analysis of data sets from particular study designs and 
experimental set-ups, but we believe that there is much 
to gain from both a scientific and a cost perspective 
by maximizing the use of existing data and the reus-
ability of newly generated data. The adoption of data-
sharing standards, such as MINSEQE, by the scientific  
community and the journals is therefore essential.

Integrating different data types can generate valu-
able resources in which these data and processed 
results can easily be browsed and searched in an inte-
grated way. However, maintaining and keeping such 
databases up-to-date requires substantial resources. It 
is a general problem in bioinformatics that resources 
are developed owing to large efforts from dedicated 
individuals or for specific grants, but as careers and 
interests progress and grants end, these resources are 
left out-of-date but with people still using the data. 
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The more complex the resource is, the harder it is to 
maintain it without established long-term funding or 
organization. Efforts for long-term funding of infra-
structure in bioinformatics, such as the ELIXIR project 

in Europe (see website), can be one way forward to 
ensure that resources developed by individual groups 
get support so that they are not to be lost from the 
community.
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