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R&D Model for the Discovery and Development of A New
Oncology Drug
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Figure 2 | R&D model yielding costs to successfully discover and develop a single new molecular entity. The model
defines the distinct phases of drug discovery and development from the initial stage of target-to-hit to the final stage, launch.
The modelis based on a set of industry-appropriate R6D assumptions (industry benchmarks and data from Eli Lilly and
Company) defining the performance of the R&D process at each stage of development (see Supplementary information S2
(box) for details). R&ED parameters include: the probability of successful transition from one stage to the next (p(TS)), the phase
cost for each project, the cycle time required to progress through each stage of development and the cost of capital,
reflecting the returns required by shareholders to use their money during the lengthy R&D process. With these inputs (darker
shaded boxes), the model calculates the number of assets (work in process, WIP) needed in each stage of development to
achieve one new molecular entity (NME) launch. Based on the assumptions for success rate, cycle time and cost, the model
further calculates the ‘out of pocket’ cost per phase as well as the total cost to achieve one NME launch per year (US$873
million). Lighter shaded boxes show calculated values based on assumed inputs. Capitalizing the cost, to account for the cost
of capital during this period of over 13 years, yields a ‘capitalized’ cost of $1,778 million per NME launch. It isimportant to
note that this model does not include investments for exploratory discovery research, post-launch expenses or overheads
(that is, salaries for employees not engaged in R&D activities but necessary to support the organization).

(Paul et al, 2010. Nature Rev Drug Discovery 9:203-214)




Targeting mutated genes with Targeted Therapy
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Drug Ban k http://www.drugbank.ca/

Open Data Drug & Drug Target Database

Home Browse Search Downloads About Help Tools Contact Us
Search: Help / Advanced
About DrugBank

What is DrugBank?

The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e.
chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and
pathway) information. The database contains 6811 drug entries including 1528 FDA-approved small molecule drugs, 150
FDA-approved biotech (protein/peptide) drugs, 87 nutraceuticals and 5080 experimental drugs. Additionally, 4294 non-
redundant protein (i.e. drug target/enzyme/transporter/carrier) sequences are linked to these drug entries. Each DrugCard
entry contains more than 150 data fields with half of the information being devoted to drug/chemical data and the other half
devoted to drug target or protein data.

Users may query DrugBank in any number of ways. The simple text query (above) supports general text queries of the entire
textual component of the database. Clicking on the Browse button (on the DrugBank navigation panel above) generates a
tabular synopsis of DrugBank's content. This browse view allows users to casually scroll through the database or re-sort its
contents. Clicking on a given DrugCard button brings up the full data content for the corresponding drug. A complete
explanation of all the DrugCard fields and sources is given here. The PharmaBrowse button allows users to browse through
drugs as grouped by their indication. This is particularly useful for pharmacists and physicians, but also for pharmaceutical
researchers looking for potential drug leads. The ChemQuery button allows users to draw (using MarvinSketch applet or a
ChemSketch applet) or write (SMILES string) a chemical compound and to search DrugBank for chemicals similar or
identical to the query compound. The TextQuery button supports a more sophisticated text search (partial word matches,
case sensitive, misspellings, etc.) of the text portion of DrugBank. The SeqSearch button allows users to conduct BLASTP
(protein) sequence searches of the 18,000 sequences contained in DrugBank. Both single and multiple sequence (i.e. whole
proteome) BLAST queries are supported. The Data Extractor button opens an easy-to-use relational query search tool that
allows users to select or search over various combinations of subfields. The Data Extractor is the most sophisticated search
tool for DrugBank. Users may download selected text components and sequence data from DrugBank and track the latest
DrugBank statistics by clicking on the Download button.

Citing DrugBank

DrugBank is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for
commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material
(DrugBank) and the original publication (see below). We ask that users who download significant portions of the database
cite the DrugBank paper in any resulting publications.

1. DrugBank 3.0: a comprehensive resource for ‘omics' research on drugs. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak
C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS. Nucleic Acids Res. 2011 Jan;39(Database issue):D1035-41.
PMID: 21059682

2. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B,
Hassanali M. Nucleic Acids Res. 2008 Jan;36(Database issue):D901-6.
PMID: 18048412

3. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M,
Stothard P, Chang Z, Woolsey J. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72.
PMID: 16381955
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Identification

Vemurafenib
DB08881

small molecule

approved

Vemurafenib is a BRAF enzyme inhibitor developed by Plexxikon and Genentech for the treatme
melanoma. [Wikipedia] The cobas® 4800 BRAF B600 mutation test provided by Roche Molecul:
diagnostic test to confirm eligibility for treatment. FDA approved on August 17, 2011 under the ¢
Roche.

AR

Download: MOL | SDF | SMILES | InChl
Display: 2D Structure | 3D Structure

BRAF(V600E) Kinase Inhibitor RO5185426
PLX4032

RG7204

RO5185426

Not Available

Zelboraf Hoffman La Roche

Not Available

Targets

1. B-Raf proto-oncogene serine/threonine-protein kinase

Pharmacological action: yes
Actions: inhibitor

Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May play a role in the postsynaptic responses of
hippocampal neuron

Organism class: human
UniProt ID: P15056 &
Gene: BRAF &

Protein Sequence: FASTA
Gene Sequence: FASTA
SNPs: SNPJam Report &

References:

1. Jordan EJ, Kelly CM: \ forthe of Expert Opin F . 2012 Dec;13(17):2533-43. doi: 10.1517/14656566.2012.737780.
Epub 2012 Oct 24. Pubmed

.
Enzymes

1. Cytochrome P450 1A2
Actions: inhibitor

Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent
electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most
active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation.
Also acts in the metabolism of aflatoxin B1 and acetaminophen

UniProt ID: P05177 &@
Gene: CYP1A2

Protein Sequence: FASTA
Gene Sequence: FASTA
SNPs: SNPJam Report &

References:

1. Jordan EJ, Kelly CM: for the of Expert Opin F . 2012 Dec;13(17):2533-43. doi: 10.1517/14656566.2012.737780.
Epub 2012 Oct 24. Pubmed

« Antineoplastic Agents

918504-65-1

Average: 489.922
Monoisotopic: 489.072546264

Co3H18CIF2N303S

InChIKey=GPXBXXGIAQBQNI-UHFFFAOYNA-N

InChl=1/C23H18CIF2N303S/c1-2-9-33(31,32)29-19-8-7-18(25)20(21(19)26)22(30)17-12-28-23-
23)13-3-5-15(24)6-4-13/h3-8,10-12,29H,2,9H2, 1H3,(H,27,28)

2. Cytochrome P450 2D6
Actions: inhibitor

Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as
antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants

UniProt ID: P10635 @
Gene: CYP2D6

Protein Sequence: FASTA
Gene Sequence: FASTA
SNPs: SNPJam Report &

References:

1. Jordan EJ, Kelly CM: for the of Expert Opin F . 2012 Dec;13(17):2533-43. doi: 10.1517/14656566.2012.737780.
Epub 2012 Oct 24. Pubmed




PharmGKB

Pharmacogenomics Knowledge
for Personalized Medicine

M Whirl-Carrillo!, EM McDonagh!, JM Hebert!, L Gong!,
K Sangkuhl!, CF Thorn!, RB Altman'? and TE Klein!
Clinical Pharmacology & Therapeutics (2012) 92(4): 414-417.

http://www.pharmgkb.org

Knowledge consortia | Implementation projects
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Figure 1 The PharmGKB Knowledge Pyramid. CPIC, Clinical Pharmacogenetics Implementation Consortium; NLP, natural-language processing. From PharmGKB
with the permission of PharmGKB and Stanford University. Copyright PharmGKB.
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vemurafenib Overview | Components “ Downloads/LinkOuts
Clinical PGx ‘ Overview | Properties ‘ Pathways || Is Related To | Publicati D inkOuts
| e Legend

o Pathway diagram /-

Dosing Guidelines (0) | Drug Labels (1) | Clinical Annotations (0) | Genetic Tests (0) © How to cite this pathway?
* All PharmGKB pathways

F B gathers inf i ing PGx on FDA drug labels from the FDA's "Table of Pharmacogenomic Biomarkers in Drug Labels", and from FDA-
pp [ED and EMA-app European Medicines Agency) [ZIT) labels brought to our attention. Excerpts from the label and downloadable
label PDFs are curated by P B.

/,'/aickieashpuﬁmn/ferm'ﬂf@‘

Please note that some drugs may have been removed from or added to the FDA's "Table of Pharmacogenomic Biomarkers in Drug Labels" without our

N |
knowledge. We periodically check the table for additions to this table and update PharmGKB accordingly. N o0
There is currently no such list for European drug labels - we are working with the EMA to establish a list of European Public Assessment Reports (EPAR)s
that contain PGx information. We are constructing this list by initially searching for drugs for which we have PGx-containing FDA drug labels - of these 44
EMA EPARs were identified and are being curated for pgx information.
We wel any inf i ing drug labels containing PGx information approved by the FDA, EMA or other Medicine Agencies around the world -
please contact feedback.
view legend
FDA Label for vemurafenib and BRAF last updated 10/25/2013
This label is on the FDA Biomarker List
Genetic testing required
Summary
Vemurafenib is a kinase inhibitor used to treat patients with or i ONLY in cases where the BRAF VB00E mutation is
found by an FDA-approved test. /n vitro evidence points to BRAF wild-type cells proli ion with to BRAF inhibil Therefore, testing is
required.
. / Cell migration, invasion,
Annotation proliferation, metastases
Excerpt from the vemurafenib (Zelboraf) drug label:
ZELBORAF is indicated for the treatment of patients with or i with BRAFV600E mutation as detected by an FDA- /»,,{»»""’J//
approved test. —
Limitation of Use: ZELBORAF is not recommended for use in patients with wild-type BRAF melanoma. Description
Confirm the presence of BRAF VB0OE mutation in tumor specimens prior to initiation with ZELOBRAF. One of the ished signaling p ys in cancer devel is the mitogen-activated protein kinase (MAPK) pathway. This pathway links
For the complete drug label text with sections o i ion highlighted, see the vemurafenib (Zelboraf) drug label PDF - . extracellular stimuli, such as growth factors and hormone, to gene expression in the nucleus. Growth factor signals progress through the proteins RAS,
: BRAF, MEK and ERK, leading to cell proliferation. Mutations in the BRAF gene cause elevated kinase activity of the BRAF protein, which is seen in 8% of
*Disclaimer: The contents of this page have not been endorsed by the FDA and are the sole responsibility of PharmGKB. all solid tumors and in 50% of melanoma cases. The BRAF V600E mutation (rs113488022), which involves the substitution of valine (V) by glutamate (E)

within the activation segment of the kinase domain , represents the vast majority of all BRAF mutations in cancer. Vemurafenib, approved by the FDA in

Eull label available at DailyMed August of 2011, is an oral BRAF inhibitor that specifically targets the VB0OE isoform [Articles: 20818844, 22028422]. Clinical studies showed that

Genes andlor phenotypes found in this label E/Aerrgslr:}fze:é%lmpm'ved rates of overall and progression-free survival in patients with previously untreated melanoma with the BRAF VB600E mutation
¢ BRAF - ) - ) ) . ) ) ) » The RAF family is a set of serine/threonine kinases, which include BRAF, ARAF and CRAF (also called RAF1), that signals through phosphorylation of
 Indications & usage section, Dosage & section, gs and p section, efficacy, toxicity other downstream kinases. Upstream from RAF is RAS, the guanine nucleotide-binding protein acti by the binding of GTP. In the normal signaling
* source: FDA Label

pathway, an extracellular signal binds to a receptor tyrosine kinase on the cell surface. The types of receptors that signal through tyrosine kinases include

o CYP1A2 those for fibroblast growth factors (FGFR), plate-derived growth factors (PDGFR), vascular epidermal growth factors (VEGFR), epidermal growth factors
o Drugi ions section, bolism/Pk (EGFR), and nerve growth factors (NGFR), among others. When bound to the ligand, the receptor tyrosine kinase undergoes autophosphorylation of its
« source: FDA Label tyrosine residues. This results in the phosphorylation of GRB2, an adapter protein that binds to the guanine nucleotide exchange factor, SOS. The
: GRB2/SOS complex stimulates inactive RAS by replacing bound GDP with GTP [Article:11294822]. Activated RAS causes BRAF to form a dimer with the
SRCYRaA4 . . . X other RAF isoforms ARAF and CRAF [Article:22083257]. Dimerization acti and ylates MEK, which is a dual-specificity tyrosine and
* Drug section, bolism/Pk serine/threonine kinase. The main downstream target of MEK is ERK (also called MAPK). Upon phosphorylation by MEK, ERK can directly phosphorylate
« source: FDA Label

and activate a variety of transcription factors, such as Ets-1, c-Jun and c-Myc [Article:16854453].
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Standard
Therapeutic
Implications

*Includes biomarkers

FDA-recognized biomarker predictive of response to an FDA-
approved drug in this indication

N that are recommended
Standard care biomarker predictive of response to an FDA- as standard care
approved drug in this indication* by the NCCN or
other expert panels

Level \ but not necessarily
Standard care biomarker predictive of response to an FDA- FDA-recognized
approved drug in another indication, but not standard care for a particular
for this indication indication

J

Investigational

Compelling clinical evidence supports the biomarker as being\ Therapeutic

predictive of response to a drug in this indication, but neither

biomarker nor drug are standard care Implications
Lovel o A
Compelling clinical evidence supports the biomarker as being
predictive of response to a drug in another indication, but )
neither biomarker nor drug are standard care Hypothetical
e l'l'helrapeutlc
mplications
Compelling biological evidence supports the biomarker as A Eased on
being predictive of response to a drug, but neither biomarker preliminary, non-
nor drug are standard care ) clinical data
Standard care biomarker predictive of resistance to an Standard
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Implications




OncoKB

EGFR 127 annotated variants

Oncogene Cancer Types with EGFR Mutations @

Highest level of evidence: Level 1 =
Also known as PIG61, ERBB1, mENA, ERBB, HERI, NISBD2 £ 20
Isoform: ENSTO0000275493 RefSeq: NM_005228.3 §‘
o 15
=}
EGFR, a receptor tyrosine kinase, is altered by amplification, mutation and/or g
overexpression in various cancers, most frequently in lung and brain cancers. ‘; 10
o
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Annotated Mutation Distribution in MSK-IMPACT Clinical Sequencing Cohort (Zehir et al., Nature Medicine, 2017)
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If you notice any mistakes or missing variants / citations, please send an email to feedback@oncokb.org.
Search:

+ Variant Cancer Type Drug(s) ~ Level Citations
Afatinib

Exon 19 deletion/insertion Non-Small Cell Lung Cancer Erlotinib 1 12 references
Gefitinib
Afatinib

Exon 19 deletion Non-Small Cell Lung Cancer Erlotinib 1 12 references
Gefitinib
Afatinib

Exon 19 insertion Non-Small Cell Lung Cancer Erlotinib 1 1reference
Gefitinib
Afatinib

E709K Non-Small Cell Lung Cancer Erlotinib 1 6 references
Gefitinib
Afatinib

G719C Non-Small Cell Lung Cancer Erlotinib 1 11 references

Gefitinib
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Cancer Therapeutics Response Portal
(CTRP)

An Interactive Resource to Identify
Cancer Genetic and Lineage Dependencies
Targeted by Small Molecules

Amrita Basu,'# Nicole E. Bodycombe,'# Jaime H. Cheah,’# Edmund V. Price,! Ke Liu,! Giannina l. Schaefer,!
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Jordi Barretina,'7 Levi A. Garraway,' C. Suk-Yee Hon,! Benito Munoz,' Joshua A. Bittker,! Brent R. Stockwell,3
Dineo Khabele,2 Andrew M. Stern,” Paul A. Clemons,'* Alykhan F. Shamiji,’* and Stuart L. Schreiber’*

The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA

2Vanderbilt University School of Medicine, Nashville, TN 37232, USA

3Columbia University, New York, NY 10027, USA

4These authors contributed equally to this work

SPresent address: H3 Biomedicine, Cambridge, MA 02139, USA

®Present address: Blueprint Medicines, Cambridge, MA 02142, USA

"Present address: Novartis Institutes for Biomedical Research (NIBR), Cambridge, MA 02139, USA

*Correspondence: pclemons@broadinstitute.org (P.A.C.), ashamji@broadinstitute.org (A.F.S.), stuart_schreiber@harvard.edu (S.L.S.)
http://dx.doi.org/10.1016/j.cell.2013.08.003



Cancer Therapeutics Response
(CTRP)
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Cancer Therapeutics Response
(CTRP)
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Cancer Therapeutics Response

(CTRP)

Each CCL was grown in its
preferred media

Curate an Informer () (v %17 ) .
Set of 354 small &~ %Iy Treated with compound at 8
molecules s % P P % concentrations for 72 hr

M . & R S

v ngn . .
S A Sensitivity assayed using
cancer cell lines CellTiter-Glo to measure

r W“dﬂpe genols mutant gene cellular ATP levels as a

R _\\:;5 compound n

surrogate for cell number and
growth

- __compound 2

| —
~ Profile sensitivity e ——
- of cell lines to
Informer Set

% viability

Area under percent viability
concentration curves (AUC) was computed as

.. .. a measure of sensitivity
.. .. AUC reflects both relative

potency and total level of
IIl | ] inhibition observed for a
sensitive unresponsnve
compound across CCLs

Correlate cell
line features
to sensitivity




Cancer Therapeutics Response

(CTRP)

Curate an Informer
Set of 354 small
molecules
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Use AUC as cut-off:
Sensitive (AUC < 3.5) CCLs
Unresponsive (AUC > 5.5) CCLs

For each compound, performed
statistics-based enrichment
analysis that combined rank-
based and parametric tests to
identify genetic alterations and
cellular features that are
significantly enriched in sensitive
or unresponsive CCLs.

>involves individual genetic
alterations relative to ranked
sensitivities measured for a single
compound across many cell lines
(p-values)

>elastic net regression analysis
across multiple genetic features



Response of CCLs to Informer Set
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Genetic Dependencies Targeted by Small Molecules

protein
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Mutations in b-Catenin Associate with Sensitivity to Navitoclax

genomic

small FDR

alteration molecule g-value
A
CTNNB1 navitoclax 2.50 x 10°
[Onco]
AXINT navitoclax 579 x 104
[TES-A]
CSNKTAT navitoclax 2.02 x 102
[TES-CNV]
legend
C T

Onco:CTNNB1
CNV:CSNK1A1
CNV:ANXA6
CNV:DMBT1
CNV:FOXF1
CNV:APC
CNV:PRKCE
CNV:SNCG
CNV:TNIP1
CNV:CDH13
CNV:ZC3H18
CNV:FANCA
CNV.TACR1
MUT:PDFGRA
CNV:LAMA3
CNV:SMAD2
CNV:NMUR2
CNV:PIGF
CNV:BCL2
CNV:SMN1
CNV:SMN2
CNV:HINT1
CNV:PPP2R2B

/,..,—-—'——'“

{1l

b
I} "[ }u |\

’h III \l‘l |
Iy ,l
iy n')'.' 'l'[..'“ﬁ

i

—_—

‘JHI I
u‘ | (|'|

'| II

Lﬁ

.

il

Z-score

e A Bl B0CFy
e SO
0( “ v A A s\!,-:J
o~ navitoclax
D
SMN1/SMN2
estrogen receptor s (comple)20H13
DMBT1 ARHGEF4 SNCG
TACR1 PDGFRA
FOXF1 APC \
NFkB (complex) Jnk=——=i Akt . ERK1/2<- PIGF
ZC3H18
CSNK1A1 PRKCE Mek
TNIP1 | FANCA 1
A 4
26S Proteasome CTNNB1 PKC(s) ERK - ANXAG6
SMAD2 $ Histoi\o H3 NMUR2
HINT1 BCL2 “— P38 MAPK PPP2R2B
LAMA3
Me Me

F1CO,$ \\ 4 y )b\
oQ" @

O

navitoclax ¢



Profiling cancer cell-line sensitivities with small molecules
an NCI CTD? Network project

Several protein kinase-targeting drugs are yielding high clinical response rates when matched to cancer

patients with specific genomic alterations in their cancers. Several other cancer drugs yield similarly high

response rates within a particular cancer lineage. These clinical successes have prompted our efforts to

identify more systematically additional genetic and lineage context-dependent small-molecule sensitivities.

We have generated a novel ‘Informer Set’ of small-molecule probes and drugs that each selectively target a
distinct node in cell circuitry and that collectively modulate a broad array of cell processes. By profiling the
impact of this small-molecule collection on a panel of cancer cell lines for which extensive genetic
characterizations are publicly available, we have generated a dataset that can be used to identify
comprehensively relationships between genetic and lineage features of human cancer cell lines and small-
molecule sensitivities.

Small Molecules Enriched Features Targets

http://www.broadinstitute.org/ctrp/

The Cancer Therapeutics Response Portal provides open access to the results obtained through
quantitatively measuring the sensitivity of 242 genetically characterized cancer-cell lines to a 354-member
‘Informer Set’ of small-molecule probes and drugs. Statistically significant correlations identified between the
genetic and lineage features of the cell lines and small-molecule sensitivities are accessible through the
portal. With this dataset, users can mine for genetic correlations in a lineage-specific context and control for
potential confounding factors. We anticipate continuing to expand the dataset in the portal, providing a living
resource for the cancer-research community. We hope that the Portal can be used to develop novel
therapeutic hypotheses and to accelerate future discovery of drugs matched to patients based on their cancer
genotype and lineage.
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Rational Combinations

* Chemical Screening Strategy for
Drug-Drug Combinations
 NCI-60

* Functional Genetic Screening
Strategy
* Loss-of-Function (LOF) Screens

« Synthetic Lethality Screens
* Essential Gene Screens
* Gain-of-Function (GOF) Screens



National Cancer Institute

DCT

Division of Cancer Treatment
and Diagnosis

U.S. National Institutes of Health | www.cancer.gov

Home | Sitemap | Contact DCTD l

|

X © Q1 cav

| Home | Current Research I Funding & Partnerships | 3clontIfIcAdvanon| Research Resources | News & Events | About DCTD

{J{ DEVELOPMENTAL THERAPEUTICS PROGRAM (DTP) |

o Introduction

Major Ongoing
Initiatives

Current Funding
Opportunities

o Scientific Advances

Cancer Diagnosis
Program

Cancer Imaging
Program

Cancer Therapy
Evaluation Program

Developmental
Therapeutics Program

Radiation Research
Program

Translational Research
Program

Biometric Research
Branch

Office of Cancer
Complementary and
Alternative Medicine

O \..__

Last Updated: 04/25/2012

MAJOR ONGOING INITIATIVES

NCI-60 Combination Screening Matrix of Approved Anticancer Drugs

Anticancer drugs are rarely curative as single agents, thus most treatment regimens utilize a combination of
agents. Selection of rational combinations based upon presumed mechanisms of action is an active area of
research. Nonetheless, treatment regimens may have built up over time by addition of new agents to
existing standards of care. To establish a framework for extending the understanding of combination
therapy, we have initiated an additional approach: the systematic testing of all pairwise combinations of
anticancer drugs approved the Food and Drug Administration (FDA) in the NCI-60 panel of human tumor
cell lines.

About 100 small molecule drugs are approved for cancer treatment worldwide. Combinations are tested at 3
or more concentrations of each agent, and single agents are tested on the same plates. About 100 pairs of
drugs have been tested in the NCI-60 in a pilot phase. Some combinations of drugs show better than single
agent activity in nearly all cell lines tested. Other combinations show more restricted benefit, with some cell
lines showing enhanced growth inhibition or cell kill, while in other cell lines the combination is antagonistic
or identical to the more active single agent.

The NCI-60 panel of cell lines has been extensively molecularly characterized, with publicly available data
including gene mutation, DNA copy number, DNA methylation, and expression of mRNA, protein and
microRNA. The patterns of cell line sensitivity for a particular drug combination can be used to probe these
molecular characterization data, generating hypotheses about potential predictive markers and/or
mechanisms of action. The most promising combinations identified from NCI-60 testing are being tested in
vivo to determine the therapeutic index. The combination screening data, along with tools to analyze the
data, will be made available to the public through the NCI website.

A Back to Top

<Previous | Next>



NCI ALMANAC

Therapeutics, Targets, and Chemical Biology

The National Cancer Institute ALMANAC:
A Comprehensive Screening Resource for the
Detection of Anticancer Drug Pairs with

Cancer
Research

Check for
updates

Enhanced Therapeutic Activity

Susan L. Holbeck', Richard Camalier', James A. Crowell', Jeevan Prasaad Govindharajulu?,
Melinda Hollingshead', Lawrence W. Anderson', Eric Polley', Larry Rubinstein’,
Apurva Srivastava?, Deborah Wilsker?, Jerry M. Collins', and James H. Doroshow*

Abstract

To date, over 100 small-molecule oncology drugs have been
approved by the FDA. Because of the inherent heterogeneity of
tumors, these small molecules are often administered in combi-
nation to prevent emergence of resistant cell subpopulations.
Therefore, new combination strategies to overcome drug resis-
tance in patients with advanced cancer are needed. In this study,
we performed a systematic evaluation of the therapeuticactivity of
over 5,000 pairs of FDA-approved cancer drugs against a panel of
60 well-characterized human tumor cell lines (NCI-60) to uncov-
er combinations with greater than additive growth-inhibitory
activity. Screening results were compiled into a database, termed
the NCI-ALMANAC (A Large Matrix of Anti-Neoplastic Agent

Combinations), publicly available at https://dtp.cancer.gov/ncial
manac. Subsequent in vivo experiments in mouse xenograft mod-
els of human cancer confirmed combinations with greater than
single-agent efficacy. Concomitant detection of mechanistic bio-
markers for these combinations in vivo supported the initiation of
two phase I clinical trials at the NCI to evaluate clofarabine with
bortezomib and nilotinib with paclitaxel in patients with
advanced cancer. Consequently, the hypothesis-generating
NCI-ALMANAC web-based resource has demonstrated value in
identifying promising combinations of approved drugs with
potent anticancer activity for further mechanistic study and trans-
lation to clinical trials. Cancer Res; 77(13); 3564-76. ©2017 AACR.



Examples of Chemical Screening of Drug-Drug Combinations

Preclinical Development

Synthetic Lethal Screening with Small-Molecule Inhibitors
Provides a Pathway to Rational Combination Therapies for
Melanoma

Devin G. Roller', Mark Axelrod’, Brian J. Capaldo?, Karin Jensen®, Aaron Mackey®*,
Michael J. Weber', and Daniel Gioeli'*

Abstract

Recent data show that extracellular signals are transmitted through a network of proteins rather than
hierarchical signaling pathways, suggesting that the inhibition of a single component of a canonical pathway is
insufficient for the treatment of cancer. The biologic outcome of signaling through a network is inherently more
robust and resistant to inhibition of a single network component. In this study, we conducted a functional
chemical genetic screen to identify novel interactions between signaling inhibitors that would not be predicted
on the basis of our current understanding of signaling networks. We screened over 300 drug combinations in
nine melanoma cell lines and have identified pairs of compounds that show synergistic cytotoxicity. The
synergistic cytotoxicities identified did not correlate with the known RAS and BRAF mutational status of the
melanoma cell lines. Among the most robust results was synergy between sorafenib, a multikinase inhibitor
with activity against RAF, and diclofenac, a nonsteroidal anti-inflammatory drug (NSAID). Drug substitution
experiments using the NSAIDs celecoxib and ibuprofen or the MAP-ERK kinase inhibitor PD325901 and the
RAF inhibitor RAF265 suggest that inhibition of COX and mitogen-activated protein kinase signaling are
targets for the synergistic cytotoxicity of sorafenib and diclofenac. Cotreatment with sorafenib and diclofenac
interrupts a positive feedback signaling loop involving extracellular signal-regulated kinase, cellular phos-
pholipase A2, and COX. Genome-wide expression profiling shows synergy-specific downregulation of
survival-related genes. This study has uncovered novel functional drug combinations and suggests that the
underlying signaling networks that control responses to targeted agents can vary substantially, depending on
unexplored components of the cell genotype. Mol Cancer Ther; 11(11); 2505-15. ©2012 AACR.
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Functional Genetic Screens
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Rational Combinations of MEKi and WNTi

Clinical
Cancer
Research

Cancer Therapy: Preclinical

RTK-RAS signalling

% 59% || 80% % Rational Combination of a MEK Inhibitor, Selumetinib, and the

= Wnt/Calcium Pathway Modulator, Cyclosporin A, in
Altered -
Preclinical Models of Colorectal Cancer
Anna Spreafico’, John J. Tentler', Todd M. Pitts’, Aik Choon Tan', Mark A. Gregory?, John J. Arcaroli’,
ERBB2 | | ERBB3 | EGFR Peter J. Klauck', Martine C. McManus®, Ryan J. Hansen®, Jihye Kim', Lindsey N. Micel™®, Heather M. Selby’,
6% [13% 4% m% Timothy P. Newton', Kelly McPhiIIips1, Daniel L. Gustafson®, James V. DeGnegoriz, Wells A. Messersmith”,
Robert A. Winn*, and S. Gail Eckhardt’

Abstract
Purpose: The mitogen-activated protein kinase (MAPK) pathway is a crudal regulator of cell prolifer-
ation, survival, and resistance to apoptosis. MEK inhibitors are being explored as a treatment option for
patients with KRAS-mutant colorectal cancer who are not candidates for EGFR-directed therapies. Initial
clinical results of MEK inhibitors have yielded limited single-agent activity in colorectal cancer, indicating
that rational combination strategies are needed.
Experimental Design: In this study, we conducted unbiased gene set enrichment analysis and synthetic
lethality screens with selumetinib, which identified the noncanonical Wnt/Ca++ signaling pathway as a
* potential mediator of resistance to the MEK1/2 inhibitor selumetinib. To test this, we used shRNA constructs
against relevant WNT receptors and ligands resulting in increased responsiveness to selumetinib in
MEK1/2 I Selumetinib colorectal cancer cell lines. Further, we evaluated the rational combination of selumetinib and WNT
'AZD6244 pathway modulators and showed synergistic antiproliferative effects in in vitro and in vivo models of
colorectal cancer.

Results: Importantly, this combination not only showed tumor growth inhibition but also tumor
regression in the more dinically relevant patient-derived tumor explant (PDTX) models of colorectal cancer.
ERK In mechanistic studies, we observed a trend toward increased markers of apoptosis in response to the
combination of MEK and WntCa"™" inhibitors, which may explain the observed synergistic antitumor
effects.

Concdlusions: These results strengthen the hypothesis that targeting both the MEK and Wnt pathways may
be a clinically effective rational combination strategy for patients with metastatic colorectal cancer. Clin

Proliferation, cell survival, translation Cancer Res; 1-14. ©2013 AACR.
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In Vivo Validation study
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Selumetinib and Cyclosporine in Treating Patients With Advanced Solid Tumors or Advanced or Metastatic Colorectal Cancer

This study is currently recruiting participants. (see Contacts and Locations) ClinicalTrials.gov Identifier:
Verified August 2014 by National Cancer Institute (NCI) NCT02188264

First received: July 10, 2014
Sponsor:

National Cancer Institute (NCI)

Infe "

provided by (Responsible Party):
National Cancer Institute (NCI)

Full Text View

P Purpose

Last updated: November 3, 2014
Last verified: August 2014
History of Changes

Tabular View No Study Results Posted Disclaimer  [&] How to Read a Study Record

This phase | trial studies the side effects and best dose of selumetinib when given together with cyclosporine in treating patients with solid tumors or colorectal cancer that have spread to other places in the body and
cannot be cured or controlled with treatment. Selumetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Biological therapies, such as cyclosporine, use substances made from
living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Giving selumetinib and cyclosporine may be a better treatment for solid tumors or colorectal cancer.

Study Type:
Study Design:

Official Title:

Condition

Recurrent Colon Cancer
Recurrent Rectal Cancer
Stage IlIA Colon Cancer
Stage IIIA Rectal Cancer
Stage I11B Colon Cancer
Stage I1IB Rectal Cancer
Stage 11IC Colon Cancer
Stage I1IC Rectal Cancer
Stage IVA Colon Cancer
Stage IVA Rectal Cancer
Stage IVB Colon Cancer
Stage IVB Rectal Cancer

Intervention Phase

Drug: selumetinib Phase 1
Drug: cyclosporine

Other: laboratory biomarker analysis

Other: pharmacological study

Unspecified Adult Solid Tumor, Protocol Specific

Interventional
Endpoint Classification: Safety Study
Intervention Model: Single Group Assignment
Masking: Open Label
Primary Purpose: Treatment

A Phase IB Study of the Combination of AZD6244 Hydrogen Sulfate (Selumetinib) and Cyclosporin A (CsA) in Patients With Advanced Solid Tumors With an Expansion Cohort in Metastatic Colorectal

Cancer



Clinical Trial Results

Cancer
Research

Translational Science
Phase Ib Results of the Rational Combination of
Selumetinib and Cyclosporin A in Advanced Solid
Tumors with an Expansion Cohort in Metastatic
Colorectal Cancer

Anuradha Krishnamurthy', Arvind Dasari?, Anne M. Noonan?, Janice M. Mehnert?,
Albert C. Lockhart®, Stephen Leong', Anna Capasso', Mark N. Stein?, Hanna K. Sanoff®,
James J. Lee’, Aaron Hansen®, Usha Malhotra®, Sarah Rippke!, Daniel L. Gustafson®,
Todd M. Pitts', Kim Ellison’, S. Lindsey Davis', Wells A. Messersmith', S. Gail Eckhardt"',
and Christopher H. Lieu'

Abstract

MEK inhibition is of interest in cancer drug development,
but clinical activity in metastatic colorectal cancer (mCRC) has
been limited. Preclinical studies demonstrated Wnt pathway
overexpression in KRAS-mutant cell lines resistant to the MEK
inhibitor, selumetinib. The combination of selumetinib
and cyclosporin A, a noncanonical Wnt pathway modulator,
demonstrated antitumor activity in mCRC patient-derived
xenografts. To translate these results, we conducted a NCI
Cancer Therapy Evaluation Program-approved multicenter
phase I/IB trial (NCT02188264) of the combination
of selumetinib and cyclosporin A. Patients with advanced
solid malignancies were treated with the combination of oral
selumetinib and cyclosporin A in the dose escalation
phase, followed by an expansion cohort of irinotecan and
oxaliplatin-refractory mCRC. The expansion cohort utilized
a single-agent selumetinib "run-in" to evaluate FZD2 bio-
marker upregulation and KRAS-WT and KRAS-MT stratifica-
tion to identify any potential predictors of efficacy. Twenty
and 19 patients were enrolled in dose escalation and expan-

sion phases, respectively. The most common adverse events
and grade 3/4 toxicities were rash, hypertension, and edema.
Three dose-limiting toxicities (grade 3 hypertension, rash,
and increased creatinine) were reported. The MTD was
selumetinib 75 mg twice daily and cyclosporin A 2 mg/kg
twice daily on a 28-day cycle. KRAS stratification did not
identify any differences in response between KRAS-WT
and KRAS-MT cancers. Two partial responses, 18 stable
disease, and 10 progressive disease responses were observed.
Combination selumetinib and cyclosporin A is well toler-
ated, with evidence of activity in mCRC. Future strategies
for concept development include identifying better predic-
tors of efficacy and improved Wnt pathway modulation.

Significance: These findings translate preclinical studies
combining selumetinib and cyclosporin into a phase I first-
in-human clinical trial of such a combination in patients with
advanced solid malignancies. Cancer Res; 78(18); 5398-407.
©2018 AACR.

Percentage change in target lesions

Table 1. Patient baseline characteristics

Escalation cohort
(n = 20)

Expansion cohort
(n=19)

Characteristics No. of patients (%) No. of patients (%)
Age (years)
18-64 13 (68.4%) 12 (57.1%)
65+ 6 (31.6%) 9 (42.8%)
Sex
Male 9 (47.4%) 10 (47.6%)
Female 10 (52.6%) 1 (52.4%)
Tumor primary site
Colorectal 13
Renal 1
Prostate 1
Pancreas 1
ECOG Performance Status
0 7 (36.8%) 10 (47.6%)
1 12 (63.2%) 1 (52.4%)
120%
Figure 5.
100% Objective response rate as per RECIST criteria v1.1by
patient. Green bars, PR; blue bars, SD; red bars,
80% progressive disease.
60%
40%
. .
1z3a56789muunuwmnmmmuu!l"'|
-20%
.« Partial Response (PR): 2
wx  otable disease (SD): 18
=« Progressive Disease (PD): 10
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Combined

Patient

Clinical Benefit Rate
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Essential Gene Screen
RESEARCH ARTICLE

Essential Gene Profiles in Breast,
Pancreatic, and Ovarian Cancer Cells

Richard Marcotte®, Kevin R. Brown’, Fernando Suarez*, Azin Sayad’,

Konstantina Karamboulas’, Paul M. Krzyzanowski*, Fabrice Sircoulomb®,
Mauricio Medrano®®, Yaroslav Fedyshyn’, Judice L.Y. Koh’, Dewald van Dyk’,
Bohdana Fedyshyn', Marianna Luhova’, Glauber C. Brito’, Franco J. Vizeacoumar’,
Frederick S. Vizeacoumar”, Alessandro Datti*’, Dahlia Kasimer’, Alla Buzind’,

Patricia Mero’, Christine Misquitta’, Josee Normand®, Maliha Haider*, Troy Ketela’,
Jeffrey L. Wrana®®, Robert Rottapel®*%, Benjamin G. Neel**, and Jason Moffat™?

m Genomic analyses are yielding a host of new information on the multiple genetic
abnormalities associated with specific types of cancer. A comprehensive de-

scription of cancer-associated genetic abnormalities can improve our ability to classify tumors into

clinically relevant subgroups and, on occasion, identify mutant genes that drive the cancer pheno-

type (“drivers”). More often, though, the functional significance of cancer-associated mutations is

difficult to discern. Genome-wide pooled short hairpin RNA (shRNA) screens enable global identifi-

cation of the genes essential for cancer cell survival and proliferation, providing a “functional ge-

nomic” map of human cancer to complement genomic studies. Using a lentiviral shRNA library

targeting -16,000 genes and a newly developed, dynamic scoring approach, we identified essential

gene profiles in 72 breast, pancreatic, and ovarian cancer cell lines. Integrating our results with cur-

rent and future genomic data should facilitate the systematic identification of drivers, unantici-
pated synthetic lethal relationships, and functional vulnerabilities of these tumor types.

SIGNIFICANCE: This study presents a resource of genome-scale, pooled shRNA screens for 72
breast, pancreatic, and ovarian cancer cell lines that will serve as a functional complement to ge-
nomics data, facilitate construction of essential gene profiles, help uncover synthetic lethal rela-
tionships, and identify uncharacterized genetic vulnerabilities in these tumor types. Cancer Discovery;
2(2); 172-89. © 2011 AACR.
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Project Achilles

Resources Contact

Project Achflles | =BROAD

Project Achilles is a systematic effort aimed at identifying and
cataloging gene essentiality across hundreds of genomically characterized
cancer cell lines. The project uses genome-scale RNAi and CRISPR-Cas9
genetic perturbation reagents to silence or knockout individual genes and identify those genes that affect cell
survival. By linking these genetic dependencies to the genetic or molecular features of the tumors, this project
is providing the foundation for a “Cancer Dependency Map” (https://depmap.org).

Search Genes

Citing Achilles

m Aviad Tsherniak, Francisca Vazquez, Phil G. Montgomery, Barbara A. Weir, et al., Defining a cancer Dependency Map. Cell. July 27, 2017.
B2/ DOl jcell 2017.06.010
Aguirre, A.J., Meyers, R.M., Weir, B.A., Vazquez, F., Zhang, C.Z., et al. (2016). Genomic Copy Number Dictates a Gene-Independent Cell
Response to CRISPR/Cas9 Targeting. Cancer Discov 6, 914-929. June 3, 2016.
Cowley, G.S., Weir, B.A,, Vazquez, F., Tamayo, P., et al. (2014) Parallel genome-scale loss of function screens in 216 cancer cell lines for the

identification of context-specific genetic dependencies. Nature Scientific Data 1, Article number: 140035. September 30, 2014.
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* Using a genome:scale, lentivirally delivered ShRNA library, we performed massively parallel pooled shRNA screens in
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* developed and provided a bioinformatics tool to identify linear and nonlinear correlations between these features.
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Highlights
¢ The DEMETER computational model segregates on- from
off-target effects of RNAi

769 strong differential dependencies were identified in 501
cancer cell lines

e Predictive models for 426 dependencies were found using
66,646 molecular features

e This cancer dependency map facilitates the prioritization of

therapeutic targets
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In Brief

A large-scale analysis of 501 cancer cell
lines reveals new vulnerabilities that will
help prioritize therapeutic targets
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Highlights

e Project DRIVE: deep RNAI interrogation of viability effects in
cancer

e ~B8,000 genes were targeted by a median of 20 shRNAs per
gene in ~400 CCLE models

e Data robustly define cancer dependency genes falling into
distinct outlier classes

e Enables genetic networks that reveal protein complexes and
biological pathways
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Connectivity Map

The Connectivity Map: Using
Gene-Expression Signatures to Connect
Small Molecules, Genes, and Disease

Justin Lamb,** Emily D. Crawford,*t David Peck,* Joshua W. Modell,* Irene C. Blat,*
Matthew J. Wrobel,* Jim Lerner,* Jean-Philippe Brunet,® Aravind Subramanian,®

Kenneth N. Ross,* Michael Reich,* Haley Hieronymus,? Guo Wei,** Scott A. Armstrong,*
Stephen ). Haggarty,™* Paul A. Clemons,* Ru Wei,* Steven A. Carr,*

Eric S. Lander,>>"® Todd R. Golub2:3->7*

To pursue a systematic approach to the discovery of functional connections among diseases, genetic
perturbation, and drug action, we have created the first installment of a reference collection of
gene-expression profiles from cultured human cells treated with bioactive small molecules,
together with pattern-matching software to mine these data. We demonstrate that this
“Connectivity Map” resource can be used to find connections among small molecules sharing a
mechanism of action, chemicals and physiological processes, and diseases and drugs. These results
indicate the feasibility of the approach and suggest the value of a large-scale community
Connectivity Map project.



Connectivity Map

Fig. 1. The Connectivity Map
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Connectivity Map

HDAC inhibitors. We first determined whether a query signature derived from a class of small
molecules could recover those same compounds in the Connectivity Map. A recent report (14)
described gene-expression responses of T24 (bladder), MDA 435 (breast carcinoma), and MDA
468 (breast carcinoma) cells treated with three histone deacetylase (HDAC) inhibitors: vorinostat
(also known as suberoylanilide hydroxamic acid or SAHA), MS-27-275, and trichostatin A. The
authors of this study defined a 13-gene signature (8 up-regulated and 5 downregulated genes;
Signature S1) that was used to query our database.

Fig. 2. HDAC Inhibitors. (A) A B
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Connectivity Map Webpage
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Library of Integrated Network-Based Cellular Signatures
(NIH LINCS Program)

LINCS aims to create a network-based understanding of biology by cataloging changes in gene expression and
other cellular processes that occur when cells are exposed to a variety of perturbing agents, and by using
computational tools to integrate this diverse information into a comprehensive view of normal and disease
states that can be applied for the development of new biomarkers and therapeutics. By generating and making
public data that indicates how cells respond to various genetic and environmental stressors, the LINCS project
will help us gain a more detailed understanding of cell pathways and aid efforts to develop therapies that might
restore perturbed pathways and networks to their normal states.

LINCS BROAD INSTITUTE : http://lincscloud.org/creating-new-data/I1000-platform/
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LINCS BROAD INSTITUTE (http://lincscloud.org/
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enable the current effort to significantly increase the size of the
CMap database and along with it, our potential to connect human diseases with the genes
that underlie them and the drugs that treat them.

CMap intends to accelerate the discovery process by systematically revealing connections
between genes/compounds discovered in screens and molecular pathways that underlie
disease states. The goal is to tum basic discoveries into drugs and diagnostics that have
therapeutic impact.
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NEWS

SEPTEMBER 25, 2013

The first public conference on
LINCS will be held at the Broad
Institute in November 2013.
Register here.

MARCH 11, 2013

The Connectivity Map website
is now hosted at Amazon Web
Services. Users will need to
reregister for the site. Details.

NOVEMBER 15, 2012

The beta version of the new
Connectivity Map  website,
lincscloud.org, is launched.

OCTOBER 4, 2012

Broad LINCS project compiles
over 950K+ profiles, 15 cell
lines, and over  20k+
perturbagens.

Copyright ® 2012, CMap Team at Broad Institute. Al rights reserved.
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The current data
The types of perturbagens in the dataset are:

« Small I I 4

The compounds were selected from multiple sources, including known drugs, pathway-specific tool compounds, and compounds of
interest identified in NIH-sponsored small-molecule screening efforts in addition to nominations from the research community.

Human genes perturbed using lentivirally-delivered shRNAs.
Genes profiled for the effect of over-expression.

Genes for the genetic perturbations were chosen to include known targets of FDA-approved drugs, drug-target pathway members,
candidate disease genes, and genes nominated by the research community.

Accessing the data: See Data AP|

List of perturbagens profiled: See Perturbagens assayed

946,944 profiles

small-molecules genomic perturbagens

1,000 landmark genes

21,000 inferred genes

Broad Institute
LINCS Data Matrix

5,178 compounds

« 1,300 off-patent FDA-approved drugs

« 700 bioactive tool compounds

* 2,000+ screening hits (MLPCN and others)

3,712 genes (shRNA + cDNA)

« targets/pathways of FDA-approved drugs (n=900)
« candidate disease genes (n=600)
« community nominations (n=500+)

15 cell types
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A Next Generation Connectivity Map: L1000 platform and the first 1,000,000 profiles

Aravind Subramanian'?, Rajiv Narayan"®, Steven M. Corsello"**?, David D. Peck’, Ted E. Natoli’, Xiacdong
Lu', Joshua Gould', John F. Davis', Andrew A. Tubelli', Jacob K. Asiedu’, David L. Lahr', Jodi E. Hirschman',
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Department of Neurology, Massachusetts General Hospital, Bos'
SDepartment of Chemistry and Chemical Biology, Harvard Univer. We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs and disease states are
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USA (W.R., J.L.); Fulcrum Therapeutics, Cambridge, MA, USA (L cOomparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of
non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of
action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials.

The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.

* Correspondence: golub@broadinstitute.org

KEYWORDS
Functional genomics; gene expression profiling; chemical biology

HIGHLIGHTS
® A new gene expression profiling method, L1000, dramatically lowers cost
e The Connectivity Map database now includes 1.3 million publicly accessible L1000 perturbational
profiles
e This expanded Connectivity Map facilitates discovery of small molecule mechanism of action and
functional annotation of genetic variants
e The work establishes feasibility and utility of a truly comprehensive Connectivity Map
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apps to query your gene expression signatures
and analyze resulting connections, click on Tools
in the menu bar.

About Si t
BROAD  skuniisorks cvep Cataetth

INSTITUTE AT BRGAD INSTITUTE CLUE

Connectopedia: Clue Knowledge
Team Base

Careers Office hours
Acknowledgements




LINCS BROAD INSTITUTE (https://clue.io)

Query CMap for perturbagens that give rise to
similar (or opposing) expression signatures

1) Name your query
(GSE14003) Proteasome inhibitor bortezomib treated JEKO1 cells (10H) vs. untreated

2) Enter up- and down-regulated genes or choose an example. Type one gene symbol
or Entrez gene ID per line, drag and drop a plain text file, or paste from Excel.

© UP-regulated genes © DOWN-regulated genes (optional)
Enter 10-150 genes for optimal results. Enter 10-150 genes for optimal results.
Please note that 150 is a technical limit. Please note that 150 is a technical limit.

© HSPA1A @ CYBA

© TRIB3 © SHMT1

© CHAC1 © RGS19

© ATF3 @ POLR2L

© FAM129A @ PTPN18

@ ASS1 @ CCDC85B

@ SLC7A1 © NDUFAS

© MAP1A @ DIP2C

© BAG3 © SIGMAR1

® NnNITA ® rRIP1

3) Review and submit. Only valid genes will be used in your query.

@ Invalid gene (2) Move to top @ Invalid gene (3) Move to top

© Valid gene (61) Move to top @ Valid gene (67) Move to top

O Valid but not used in query (0) Move to O Valid but not used in query (0) Move to
top top

UL The results will be posted to your Analysis History in approximately 5 minutes.



LINCS BROAD INSTITUTE (https://clue.io/f)

Oo 8 ®) CLUE.IO has replaced lincscloud.org

Question: Where can | download LINCS L1000 datasets?
For LINCS Phase | data see GEO GSE92742

For LINCS Phase |l data see GEO GSE70138

For CMAP-HBS-LINCS contest data, see GEO GSES2743

Question: I'd rather not download all the data - do you have analysis
tools?
Analysis tools from the Connectivity Map project are now available on the Broad

Institute's CLUE software platform. Sign up at clue.io

Question: Is there an API? A new APl is now available. See clue.io/api

Please contact clue@broadinstitute.org with any questions.



Fig 2: L1000 Dataset Coverage, Signature Generation & Data Access
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Fig 4. Reference Perturbagen Classes for CMaE Discoverx
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Fig 6A: Discovery of MOA

Query: Find compounds that induce the similarity gene expression
profiles as query signature.

Unannotated compound BRD-2751 showed strong connectivity to

the Rho-associated protein kinase (ROCK) PCL, suggesting that it
might in fact be a ROCK inhibitor.
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(Subramanian et al (2017), Cell 171, 1437 — 1452)



Fig 6B: Discovery of Selective
Compound

uery: Find compounds that induce the similarity gene expression
profiles as Loss of function (ShRNAs CSKN1A1).
Results: One unannotated compound BRD-1868 showed strong
connectivity to CSNK1A1 knock-down in two cell types.
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Fig 7B: Connecting Patients data
to explain resistance mechanisms
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(Subramanian et al (2017), Cell 171, 1437 — 1452)



Fig 7C: Connecting Patients data
to predict therapeutic efficacy
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Take Home Message

Knowledge-based of pharmacogenomics, drug-gene interactions / relationships
provide hypothesis-generation for developmental therapeutics research.

Perturbagen-based resources capture rich phenotypic-gene interactions that could
be further analyzed to reveal gene-drug interactions.

Acquired resistance and escape pathways can be identified by chemical and
functional genomics screens.

From high-throughput screens, hits could be inhibited by rational combination of
drugs.

Gene expression changes could be used as the ‘universal language’ to connect
between biological systems, genes, and drugs.

Connectivity map (Cmap) concept provides an innovative approach to connect
between biological systems, genes and drugs.



