Gene List Enrichment Analysis -Statistics, Tools, Data Integration and Visualization

Aik Choon Tan, Ph.D. Associate Professor of Bioinformatics Division of Medical Oncology Department of Medicine aikchoon.tan@ucdenver.edu 10/9/2018 http://tanlab.ucdenver.edu/labHomePage/teaching/CANB7640/

Outline

- Why do enrichment analysis?
- Types of Enrichment analysis
- Statistics
- Annotation sources / databases and Tools
- Data Integration and Visualization tools

RESEARCH ARTICLE

The Genetic Landscape of a Cell

Michael Costanzo,^{1,2}* Anastasia Baryshnikova,^{1,2}* Jeremy Bellay,³ Yungil Kim,³ Eric D. Spear,⁴ Carolyn S. Sevier,⁴ Huiming Ding,^{1,2} Judice L.Y. Koh,^{1,2} Kiana Toufighi,^{1,2} Sara Mostafavi,^{1,5} Jeany Prinz,^{1,2} Robert P. St. Onge,⁶ Benjamin VanderSluis,³ Taras Makhnevych,⁷ Franco J. Vizeacoumar,^{1,2} Solmaz Alizadeh,^{1,2} Sondra Bahr,^{1,2} Renee L. Brost,^{1,2} Yiqun Chen,^{1,2} Murat Cokol,⁸ Raamesh Deshpande,³ Zhijian Li,^{1,2} Zhen-Yuan Lin,⁹ Wendy Liang,^{1,2} Michaela Marback,^{1,2} Jadine Paw,^{1,2} Bryan-Joseph San Luis,^{1,2} Ermira Shuteriqi,^{1,2} Amy Hin Yan Tong,^{1,2} Nydia van Dyk,^{1,2} Iain M. Wallace,^{1,2,10} Joseph A. Whitney,^{1,5} Matthew T. Weirauch,¹¹ Guoqing Zhong,^{1,2} Hongwei Zhu,^{1,2} Walid A. Houry,⁷ Michael Brudno,^{1,5} Sasan Ragibizadeh,¹² Balázs Papp,¹³ Csaba Pál,¹³ Frederick P. Roth,⁸ Guri Giaever,^{2,10} Corey Nislow,^{1,2} Olga G. Troyanskaya,¹⁴ Howard Bussey,¹⁵ Gary D. Bader,^{1,2} Anne-Claude Gingras,⁹ Quaid D. Morris,^{1,2,5} Philip M. Kim,^{1,2} Chris A. Kaiser,⁴ Chad L. Myers,³† Brenda J. Andrews,^{1,2} Charles Boone^{1,2}†

A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, *Saccharomyces cerevisiae*. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification. Systematic deletion analysis in the budding yeast, *Saccharomyces cerevisiae*, demonstrates that the majority of its ~6000 genes are individually dispensable, with only a relatively

¹Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ²Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada, ³Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA. ⁴Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. ⁵Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada. ⁶Department of Biochemistry, Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA. ⁷Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ⁸Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. ⁹Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada. ¹⁰Department of Pharmacy, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ¹¹Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. ¹²S&P Robotics, Inc., 1181 Finch Avenue West, North York, Ontario M3] 2V8, Canada. ¹³Institute of Biochemistry, Biological Research Center, H-6701 Szeged, Hungary. ¹⁴Department of Computer Science, Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA. ¹⁵Biology Department, McGill University, Montreal, Quebec H3A 1B1, Canada.

pathway

Why Do Enrichment Analysis?

- From "omics" data and analysis, generate list(s) of "interesting" gene lists (List A)
- Genes act in concert to drive biological processes (List B)
- Can we compare the two lists (Lists A and B)
- Is the overlap different than expected? (pvalue)
- Is List A contains genes involved in List B biological process? (biology)

Idea

Different Tests for Enrichment

- Fisher's exact
- Chi-square
- Binomial
- Hypergeometric
- Kolmogorov-Smirnov (This is implemented in GSEA)
- Permutation
- •

Statistical Test for Enrichment

Statistics to Test for Enrichment

- What is the chance of observing enrichment at least this extreme due to chance?
- Different tests produce very different ranges of p-values
- All test for over-enrichment, some test for under-enrichment
- Recommendation: Use p-values as a tool to rank gene sets and don't take them literally (remember, biology trumps statistics)
- Useful to correct for multiple testing (e.g. FDR)

Input for Enrichment Test

- Background gene set
 - All genes that could appear in your gene list (usually, assume all the genes in the genome, e.g. 20,000 genes for human genome)
- Annotations / Gene sets
 - Which annotation sources / databases?
 - Some annotation terms may be subsets of other terms (e.g. in Gene Ontology)
- Goal: To identify gene sets/concepts with biological significance from your gene list

In Practice

- Choose a tool / program that
 - Includes your species
 - Includes your genes or probe identifiers (and do the matching from probes to genes)
 - Up-to-date annotation
 - Able to define background (if possible)
 - Able to select gene sets/annotations/concepts
- Try at least a few tools and compare
 If the biology is real, you will find it from different tools
- Get recommendations from
 bioinformatics/statistics for interpreting the results

Gene List Enrichment Analysis

(Adapted from Huang et al NAR 2008)

So, which database(s) and tool(s) to use?

181 databases, Online: 1737 databases http://www.oxfordjournals.org/nar/database/c/

PRINT ISSN: 0305-1048 ONLINE ISSN: 1362-4962

DATABASE ISSUE (Jan)

Nucleic Acids Research

VOLUME 46 DATABASE ISSUE JANUARY 4, 2018 https://academic.oup.com/nar

OXFORD UNIVERSITY PRESS Open Access No barriers to access – all articles freely available online

85 web servers

PRINT ISSN: 0305-1048 ONLINE ISSN: 1362-4962

WEB SERVER ISSUE (July)

Nucleic Acids Research

VOLUME 46 WEB SERVER ISSUE JULY 2, 2018 https://academic.oup.com/nar

OXFORD UNIVERSITY PRESS Open Access No barriers to access – all articles freely available online

Survey

OPEN O ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Review

Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges

Purvesh Khatri^{1,2}*, Marina Sirota^{1,2}, Atul J. Butte^{1,2}*

1 Division of Systems Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America, 2 Lucile Packard Children's Hospital, Palo Alto, California, United States of America

 Table 1. Examples of pathway analysis tools in each generation.

Name	Availability	Reference
ORA tools		
Onto-Express	Web (http://vortex.cs.wayne.edu)	[4,5]
GenMAPP	Standalone (http://www.genmapp.org)	[11,71]
GoMiner	Standalone, Web (http://discover.nci.nih.gov/gominer)	[72,73]
FatiGO	Web (http://babelomics.bioinfo.cipf.es)	[74]
GOstat	Web (http://gostat.wehi.edu.au)	[7]
FuncAssociate	Web (http://llama.mshri.on.ca/funcassociate/)	[6]
GOToolBox	Web (http://genome.crg.es/GOToolBox/)	[10]
GeneMerge	Standalone, Web (http://genemerge.cbcb.umd.edu/)	[9]
GOEAST	Web (http://omicslab.genetics.ac.cn/GOEAST/)	[75]
ClueGO	Standalone (http://www.ici.upmc.fr/cluego/)	[76]
FunSpec	Web (http://funspec.med.utoronto.ca/)	[77]
GARBAN	Web	[78]
GO:TermFinder	Standalone (http://search.cpan.org/dist/GO-TermFinder/)	[8]
WebGestalt	Web (http://bioinfo.vanderbilt.edu/webgestalt/)	[79]
agriGO	Web (http://bioinfo.cau.edu.cn/agriGO/)	[80]
GOFFA	Standalone, Web (http://edkb.fda.gov/webstart/arraytrack/)	[81]
WEGO	Web (http://wego.genomics.org.cn/cgi-bin/wego/index.pl)	[82]
FCS tools		
GSEA	Standalone (http://www.broadinstitute.org/gsea/)	[21,29]
sigPathway	Standalone (BioConductor)	[22]
Category	Standalone (BioConductor)	[24]
SAFE	Standalone (BioConductor)	[30]
GlobalTest	Standalone (BioConductor)	[15]
PCOT2	Standalone (BioConductor)	[17]
SAM-GS	Standalone (http://www.ualberta.ca/~yyasui/software.html)	[83]
Catmap	Standalone (http://bioinfo.thep.lu.se/catmap.html)	[84]
T-profiler	Web (http://www.t-profiler.org)	[85]
FunCluster	Standalone (http://corneliu.henegar.info/FunCluster.htm)	[86]
GeneTrail	Web (http://genetrail.bioinf.uni-sb.de)	[87]
GAzer	Web	[88]
PT-based tools		
ScorePAGE	No implementation available	[37]
Pathway-Express	Web (http://vortex.cs.wayne.edu)	[38,39]
SPIA	Standalone (BioConductor)	[40]
NetGSA	No implementation available	[43]

doi:10.1371/journal.pcbi.1002375.t001

Survey

Published online 25 November 2008

Nucleic Acids Research, 2009, Vol. 37, No. 1 1–13 doi:10.1093/nar/gkn923

SURVEY AND SUMMARY

Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists

Da Wei Huang, Brad T. Sherman and Richard A. Lempicki*

Laboratory of Immunopathogenesis and Bioinformatics, Clinical Services Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA

Class I – Singular enrichment analysis (SEA) = ORA Class II – Gene set enrichment analysis (GSEA) = FCS Class III – Modular enrichment analysis (MEA) = PT

Enrichment tool name	Year of release	Key statistical method	Category
FunSpec	2002	Hypergeometric	Class I
Onto-express	2002	Fisher's exact; hypergeometic; binomial; chi-square	Class I
EASE FatiCO/FatiWise/FatiCO+	2003	Fisher's exact (modified as EASE score)	Class I Class I
FuncAssociate	2003	Fisher's exact	Class I
GARBAN	2003	Hypergeometric	Class I
GeneMerge	2003	Hypergeometric	Class I
GoMiner	2003	Fisher's exact	Class I
MAPPFinder	2003	Z-score; hypergeometric	Class I
CLENCH	2004	Hypergeometric; chi-square; binomial	Class I
GOAI	2004	Permutation	Class I Class I
GOArray	2004	Hypergeometric: Z-score: permutation	Class I
GOStat	2004	Fisher's exact; chi-squre	Class I
GoSurfer	2004	Chi-square	Class I
OntologyTraverser	2004	Hypergeometric; Fisher's exact	Class I
THEA	2004	Hypergeometric	Class I
BINGO	2005	Hypergeometric; binomial	Class I Class I
raci	2005	Fisher's exact	Class I Class I
Gobar	2005	Hypergeometric	Class I
GOCluster	2005	Hypergeometric	Class I
GOSSIP	2005	Fisher's exact	Class I
L2L	2005	Binomial; hypergeometric	Class I
WebGestalt	2005	Hypergeometric	Class I
BayGO	2006	Bayesian; Goodman and Kruskal's gamma factor	Class I
Cone Class Expression	2006	Fisher's exact	Class I Class I
GOALIE	2006	Z-stausucs Hidden K rinke model	Class I
GOFFA	2006	Fisher's inverse chi-square	Class I
GOLEM	2006	Hyerpgeometric	Class I
JProGO	2006	Fisher's exact; Kolmogorov-Smirnov test; student's t-test; Wilcoxon's test; hypergeometric	Class I
PageMan	2006	Fisher's exact; chi-square; Wilcoxon	Class I
STEM	2006	Hypergeometric	Class I
FasyGO	2006	Un-square	Class I Class I
g:Profiler	2007	Hypergeometric	Class I
ProbCD	2007	Yule's Q; Goodman-Kruskal's gamma; Cramer's T	Class I
GOEAST	2008	Hypergeometric	Class I
GOHyperGAll	2008	Hypergeometric	Class I
CatMap	2004	Permutations	Class II
Godist	2004	Kolmogorov–Smirnov test	Class II
GO-Mapper	2004	Gaussian distribution; EQ-score	Class II Class II
GSEA	2004	Kolmogorov–Smirnov-like statistic	Class II
MEGO	2005	Z-score	Class II
PAGE	2005	Z-score	Class II
T-profiler	2005	t-Test	Class II
FuncCluster	2006	Fisher's exact	Class II
Fauscan	2007	Fisher's Exact	Class II
FINA GAzer	2007	Z-statistics: permutation	Class II Class II
GeneTrail	2007	Hypergeometric: Kolmogorov–Smirnov	Class II
MetaGP	2007	Z-score	Class II
Ontologizer	2004	Fisher's exact	Class III
POSOC	2004	POSET (a discrete math: finite partially ordered set)	Class III
topGO	2006	Fisher's exact	Class III
GO-2D CENECODIS	2007	Hypergeometric; binomial	Class III
GENECODIS	2007	riypergeometric; cni-square Resnik's similarity	Class III
PalS	2007	Percent	Class III
ProfCom	2008	Greedy heuristics	Class III
GOTM	2004	Hypergeometric	Class I,II
ermineJ	2005	Permutations; Wilcoxon rank-sum test	Class I,II
DAVID	2003	Fisher's Exact (modified as EASE score)	Class I,III
GOToolBox	2004	Hypergeometric; Fisher's exact; Binomial	Class I,III
ADGO EunNet	2006	Z-stausuc Unclear	Class II,III
r univet	2008	Uncical	Unciear

Enrichment Analysis Tools

Table 2. Categorization of enrichment analysis tools

Tool category	Description	Indication and limitation	Sub-type of algorithms	Methods	Example tool
Class I: singular enrichment analysis (SEA)	Enrichment <i>P</i> -value is calculated on each term from the pre-selected interesting gene list. Then, enriched terms are listed in a simple linear text format. This	Capable of analyzing any gene list, which could be selected from any high-throughput biological studies/technologies (e.g. Microarray, ChIP-on-CHIP	Global reference background	Fisher's exact hypergeometric chi-square binomial	GoStat, GoMiner, GOTM, BinGO, GOtoolBox, GFinder, etc.
(SEA)	strategy is the most traditional algorithm. It is still dominantly used by most of the enrichment analysis tools.	ChIP-on-sequence, SNP array, EXON array, large scale sequence, etc.). However, the deeper inter- relationships among the terms may not be fully contured in linear	Local reference background	Fisher's Exact hypergeometric chi-square binomial	DAVID, Onto-Express, GARBAN, FatiGO, etc.
		format report.	Neural network	Bayesian	BayGO
Class II:	Entire genes (without pre-selec-	Suitable for pair-wide biological	Based on ranked gene list	Kolmogorov-Smirnov-like	GSEA, CapMap, etc.
enrichment analysis (GSEA)	values are considered in the enrichment analysis. The unique features of this strategy are: (i) No need to pre-select interesting genes, as opposed to Classes I and II; (ii) Experimental values inte- grated into <i>P</i> -value calculation.	trol). Currently, may be difficult to be applied to the diverse data structures derived by a complex experimental design and some of the new technologies (e.g. SNP, EXON, Promoter arrays).	Based on continuous gene values	t-Test permutation Z-score	FatiScan, ADGO, ermineJ, PAGE, iGA, GO-Mapper, GOdist, FINA, T-profiler, MetaGP, etc.
Class III: modular enrichment	This strategy inherits key spirit of SEA. However, the term-term/ gene-gene relationships are con-	Capable of analyzing any gene lists, which could be selected from any high-throughput biological	Composite annotations	Measure enrichment on joint terms	ADGO, GeneCodis, ProfCom, etc.
analysis (MEA)	sidered into enrichment <i>P</i> -value calculation. The advantage of this strategy is that term-term/gene-	studies/technologies, like Class I. Emphasis on network relation- ships during analysis. 'Orphan'	DAG Structure	Measure enrichment by considering parents-child relationships	topGO, Ontologizer, POSOC, etc.
	unique biological meaning that is not held by a single term or gene. Such network/modular analysis is closer to the nature of biological data structure.	to other genes/terms), that some- times could be very interesting, too, may be left out from the analysis.	Global annotation relationship	Measure term-term global similarity with Kappa Statistics Czekanowski-Dice Pearson's correlation	DAVID, GoToolBox, etc.

Class I – SEA / ORA

- Evaluates the statistical significance on a fraction of genes in a particular pathway/gene set/annotation term
- 2x2 table method
- Fisher's exact test, chi-square test, binomial test, hypergeometric test
- Use p-value (and FDR) to sort the gene sets/pathways/annotation terms enriched in your gene list

Class II – GSEA / FCS

- Evaluates the statistical significance at particular pathway/gene set/annotation term instead of individual genes
- Covered in previous lecture GSEA
- Kolmogorov-Smirnov test, permutation
- Use p-value (and FDR) to sort the gene sets/pathways/annotation terms enriched from high-throughput "omics" data

Class III – MEA / PT

- Pathway topology (PT)-based or MEA methods have been developed to utilize the additional information.
- PT-based methods are essentially the same as FCS methods in that they perform the same three steps as FCS methods.
- The key difference between the two is the use of pathway topology to compute genelevel statistics.

Limitations

	Class I – ORA /	Class II – FCS /	Class III – MEA /
	SEA	GSEA	PT
Limitations	 Evaluate each gene independently Different tests give different results that may alter the interpretation of the data No interactions are considered 	 Evaluate each pathway independently No consideration of topology or interactions with the gene sets/pathways 	 Very specific to cell type and cell- specific expression based on conditions Topology dependency is hard to extract Dynamic?

Recommendations / Rules

- Realistically positioning the role of enrichment P-values in the current datamining environment
- 2. Understanding the limitation of multiple testing correction on enrichment P-values
- 3. Cross-comparing enrichment analysis results derived from multiple gene lists

Recommendations / Rules

- 4. Setting up the 'right' gene reference background
- 5. Extending backend annotation databases
- 6. Efficiently mapping users' input gene identifiers to the available annotation
- 7. Enhancing the exploratory capability and graphical presentation

https://david.ncifcrf.gov/

NIH DAVID

*** ***	Welcome to DAVID 6.8 with updated Knowledgebase (<u>more info</u>), *** If you are looking for <u>DAVID 6.7</u> , please visit our <u>development site</u> , ***
Shortcut to DAVID Tools	Recommending: A paper published in Nature Protocols describes step-by-step procedure to use DAVID!
unctional Annotation	Welcome to DAVID 6.8
annotation enrichment analysis, functional tion clustering , BioCarta & KEGG pathway 19, gene-disease association, homologue 10 transition, literature match and more	2003 - 2017
Sene Functional Classification a a rapid means to reduce large lists of into functionally related groups of genes to rave the biological content captured by complut technologies. <u>Marcs</u> Sene ID Conversion t tist of gene ID/accessions to others of color with the most comprehensive gene piping repository. The ambiguous ons in the list can also be determined uconatically. <u>Mars</u> Sene Name Batch Viewer r gene names for a given gene list; Search nally related genes within your list or not automatical of the sene of the detailed ation. <u>More</u>	 The Database for Annotation, Visualization and Integrated Discovery (DAVID) V6.8 comprises a full Knowledgebase update to the sixth version of our original web-accessible programs. DAVID now provides a comprehensive set of functional annotation tools for investigators to understand biological meaning behind large list of genes. For any given gene list, DAVID tools are able to: Cite DAVID The batk annotation of our original backgrounds User's customized gene background Enhanced calculating speed Statistics of DAVID David Classification Algorithms Pre-built Affymetrix and Illumina backgrounds User's customized gene background Enhanced calculating speed Statistics of DAVID DAVID Bioinformatic Resources Citations Visualize genes on BioCarta & KEGG pathway maps Cluster redundant annotation terms Y Visualize genes on BioCarta & KEGG pathway maps Display related many-genes-to-many-terms on 2-D view. Cluster functionally related genes not in the list Explore gene names in batch Link gene-disease associations
Please cite <u>Nature Protocols 2005</u>	 Highlight protein functional domains and motifs Kedirect to related literatures Convert gene identifiers from one type to another. And more ▲ 25,000 Citations ▲ Verage Daily Usage: ~2,600 gene lists/sublists from ~800 unique researchers. Average Annual Usage: ~1,000,000 gene lists/sublists from ~800 unique researchers. Average Annual Usage: ~1,000,000 gene lists/sublists from ~5,000 research institutes world-wide

*** Welcome to DAVID 6.8 with updated Knowledgebase (<u>more info</u>). *** *** If you are looking for <u>DAVID 6.7</u>, please visit our <u>development site</u>. ***

Upload List Background **Annotation Summary Results** Gene List Manager Help and Tool Manual Select to limit annotations by one Current Gene List: demolist1 145 DAVID IDs or more species Help Check Defaults Current Background: Homo sapiens Clear All - Use All Species -Disease (1 selected) Homo sapiens(149) Functional_Categories (3 selected) Unknown(15) Gene_Ontology (3 selected) Select Species General_Annotations (0 selected) E Literature (0 selected) List Manager Help Main_Accessions (0 selected) Pathways (3 selected) demolist1 Protein_Domains (3 selected) Protein_Interactions (0 selected) Select List to: Tissue_Expression (0 selected) Use Rename ***Red annotation categories denote DAVID defined defaults*** Remove Combine Show Gene List Combined View for Selected Annotation View Unmapped Ids Functional Annotation Clustering Functional Annotation Chart Functional Annotation Table

Functional Annotation Clustering

Functional Annotation Clustering

Help and Manual

Current Gene List: demolist1 Current Background: Homo sapiens 155 DAVID IDs Options Classification Stringency Medium

Rerun using options Create Sublist

72 Cluster(s)

Download File

	Annotation Cluster 1	Enrichment Score: 4.81			Count	P_Value	Benjamini
	UP_SEQ_FEATURE	signal peptide	<u>RT</u>		50	6.5E-7	4.2E-4
	SP_PIR_KEYWORDS	signal	RT		50	8.6E-7	2.8E-4
	UP_SEQ_FEATURE	disulfide bond	RT		45	1.2E-6	4.0E-4
	SP_PIR_KEYWORDS	disulfide bond	RT		46	1.7E-6	2.7E-4
	GOTERM_CC_FAT	extracellular region	RT		40	6.9E-6	1.5E-3
	GOTERM_CC_FAT	extracellular region part	RT		24	3.8E-5	4.0E-3
	SP_PIR_KEYWORDS	Secreted	RT		29	7.2E-5	4.6E-3
	GOTERM_CC_FAT	extracellular space	RT	—	19	9.4E-5	6.5E-3
	SP_PIR_KEYWORDS	<u>alycoprotein</u>	<u>RT</u>		53	2.3E-4	7.5E-3
	UP_SEQ_FEATURE	glycosylation site:N-linked (GlcNAc)	<u>RT</u>		48	1.6E-3	1.6E-1
	Annotation Cluster 2	Enrichment Score: 2.64	G		Count	P_Value	Benjamini
	GOTERM_BP_FAT	response to bacterium	<u>RT</u>	—	10	1.4E-4	9.1E-2
	SP_PIR_KEYWORDS	antibiotic	<u>RT</u>	=	6	1.7E-4	7.9E-3
	SP_PIR_KEYWORDS	Antimicrobial	<u>RT</u>	=	6	2.1E-4	8.5E-3
	INTERPRO	Defensin propeptide	<u>RT</u>	E	3	7.2E-4	2.5E-1
	INTERPRO	Alpha defensin	<u>RT</u>		3	7.2E-4	2.5E-1
	INTERPRO	Alpha-defensin	RT	E	3	7.2E-4	2.5E-1
	GOTERM_BP_FAT	defense response to bacterium	RT	=	7	8.9E-4	3.4E-1
	PIR_SUPERFAMILY	PIRSF001875:alpha-defensin	RT	÷	3	1.2E-3	1.2E-1
	INTERPRO	Mammalian defensin	RT	÷	3	2.0E-3	2.3E-1
	SMART	DEFSN	RT	÷	3	2.8E-3	2.5E-1
	SP_PIR_KEYWORDS	fungicide	RT	÷	3	3.0E-3	6.0E-2
	GOTERM_BP_FAT	defense response to fungus	RT	÷	3	7.2E-3	6.8E-1
	GOTERM_BP_FAT	killing of cells of another organism	RT	÷	3	8.3E-3	6.6E-1
	GOTERM_BP_FAT	cell killing	RT	÷	3	2.4E-2	8.5E-1
	GOTERM_BP_FAT	response to fungus	RT	1	3	2.4E-2	8.5E-1
	SP_PIR_KEYWORDS	homodimer	RT	=	4	3.1E-2	2.8E-1
	SP_PIR_KEYWORDS	defensin	RT	1 · · · · · · · · · · · · · · · · · · ·	3	3.7E-2	3.2E-1

Functional Related Terms

Functional Related Terms

Options

Rerun using options 3896 term(s) were searched. 12 term(s) passed the filter. Contract Con Moderate (0.25-0.5) Low (<0.25) Similarity Score: Very High (0.75-1) High (0.5-0.75) # Category Term Kappa SP_PIR_KEYWORDS 1 signal 1.00 UP_SEQ_FEATURE 2 signal peptide 1.00 GOTERM CC FAT 3 extracellular region 0.72 UP_SEQ_FEATURE disulfide bond 0.71 4 SP_PIR_KEYWORDS disulfide bond 0.70 5 SP_PIR_KEYWORDS Secreted 6 0.59 UP_SEQ_FEATURE glycosylation site:N-linked (GlcNAc...) 0.58 7 0.58 SP_PIR_KEYWORDS glycoprotein 8 GOTERM_CC_FAT extracellular region part 0.45 9 extracellular space 10 GOTERM_CC_FAT 0.38 GOTERM_BP_FAT 0.33 defense response 11 GOTERM_BP_FAT 12 cell surface receptor linked signal transduction 0.30

2D View of Functional Annotation Clusters

corresponding gene-term association positively reported

Functional Annotation Chart

Help and Manua

Functional Annotation Chart

Cui	Current Gene List: demolist1 Current Background: Homo sapiens						
15	5 DAVID IDs						
Rerun	Using Options (Cre	ate Sublist					
211 c	hart records				E Do	wnload Fi	le
Sublist	t <u>Category</u> ¢	Term	¢ RT	Genes <u>Cour</u>	¢ <u>%</u> ¢	<u>P-</u> Value <u>Benjan</u>	<u>hin</u> ‡
	UP_SEQ_FEATURE	signal peptide	RT	50	32.3	6.5E- 4.2E-4 7	
	SP_PIR_KEYWORDS	signal	RT	50	32.3	8.6E- 2.8E-4 7	
	UP_SEQ_FEATURE	disulfide bond	RT	45	29.0	1.2E- 4.0E-4 6	
	SP_PIR_KEYWORDS	disulfide bond	RT	46	29.7	1.7E- 2.7E-4 6	
	GOTERM_CC_FAT	extracellular region	RT	40	25.8	6.9E- 6	
	GOTERM_CC_FAT	extracellular region part	RT	24	15.5	3.8E- 4.0E-3 5	
	GOTERM_MF_FAT	oxygen binding	RT 🔤	6	3.9	3.8E- 5 1.4E-2	
	SP_PIR_KEYWORDS	heme	<u>RT</u>	8	5.2	4.0E- 4.3E-3 5	
	SP_PIR_KEYWORDS	iron	RT	11	7.1	6.9E- 5	
	SP_PIR_KEYWORDS	Secreted	RT	29	18.7	7.2E- 4.6E-3 5	
	GOTERM_CC_FAT	extracellular space	RT	19	12.3	9.4E- 6.5E-3 5	
	GOTERM_MF_FAT	heme binding	<u>RT</u>	8	5.2	1.0E- 4	
	SP_PIR_KEYWORDS	chromoprotein	RT 🔤	6	3.9	1.1E- 5.9E-3 4	
	GOTERM_BP_FAT	defense response	<u>RT</u>	18	11.6	1.3E- 4 1.7E-1	
	GOTERM_BP_FAT	response to bacterium	<u>RT</u>	10	6.5	1.4E- 9.1E-2 4	
	GOTERM_MF_FAT	tetrapyrrole binding	<u>RT</u>	8	5.2	1.5E- 1.9E-2 4	
	SP_PIR_KEYWORDS	antibiotic	<u>RT</u>	6	3.9	1.7E- 7.9E-3 4	
	SP_PIR_KEYWORDS	Antimicrobial	<u>RT</u>	6	3.9	2.1E- 8.5E-3 4	
	SP_PIR_KEYWORDS	<u>chemotaxis</u>	RT 🔤	6	3.9	2.3E- 8.0E-3 4	
	SP_PIR_KEYWORDS	alvcoprotein	RT	53	34.2	2.3E- 4 7.5E-3	
	SP_PIR_KEYWORDS	Immunoglobulin domain	RT	13	8.4	2.7E- 4 7.8E-3	
	SP_PIR_KEYWORDS	metalloprotein	<u>RT</u>	7	4.5	3.8E- 4 1.0E-2	
	GOTERM_MF_FAT	iron ion binding	RT	11	7.1	4.3E- 4 3.9E-2	

Linking Enriched Genes to Pathways (KEGG only)

Fnrichr		Login Register
Transcription Pathways Onto	ologies Disease/Drugs Cell Ty	vpes Misc Legacy Crowd
Description Sample gene list (375 gene	s)	
ChEA 2016 E2F1_1555785_ChIP.Seq_MESCs_Mouse SRF_2115370_ChIP.Seq_MESCs_Mouse ARID1A_20064375_ChIP.Seq_MESCs_Mouse NELFA_200543846 PRAMA_22158163_ChIP.Seq_LIVER_Mouse	ENCODE and ChEA Consensus TFs from ERG_CHEA NR2C2_ENCODE GABPA_ENCODE HNF4A_ENCODE ZMIZI_ENCODE	ARCHS4 TFs Coexp NPAS1_human_tf_ARCH54_coexpression ZNF17_human_tf_ARCH54_coexpression ZNF780B_human_tf_ARCH54_coexpression GABPB1_human_tf_ARCH54_coexpression Z0156_human_tf_ARCH54_coexpression
TF Perturbations Followed by Expression KLF3 KO, MOUSE GSE43806, CREEDSID, GEN GLS2 KO, MOUSE GSE43806, CREEDSID, GEN GLS2 KO, MOUSE, GSE43103, CREEDSID, GEN IRF9, OL HUMAN, GSE50002, CREEDSID, GEN TWISTI, OL MOUSE, GSE50002, CREEDSID, G	Enrichr Submissions TF- Gene Coocurrence ZKSRI ZNF830 MYNN NUPL2 TKIM23	TRANSFAC and JASPAR PWMs CEBPE (human) SOX2 (human) FOXA1 (mouse) NFATC3 (human) FOXF2 (human)
Epigenomics Roadmap HM ChIP-seq H3K9768 Feal Heart H3K3768 Feal Heart H3K27ac CD4 Naive Primary Cells H3K27ac H9 H3K79me2 H9	TargetScan microRNA 2017 Isa-miR-1278 mmu-miR-704 Isa-miR-3144-3p mmu-miR-707	miRTarBase 2017 mmu-miR-140-5p hsa-miR-1450a-5p hsa-miR-190a-3p immu-miR-3062-5p
ENCODE TF ChIP-seq (9) 2015 POLR2A, kidney, mm9 POLR2Aphosphoss, Panci hg19 NR2C2_GM128780 hg19 SP1_AS49 hg19 MYC_MELcell ine, mm9	TF-LOF Expression from GEO gls2_17618285, kidney.lof_mouse_gpi2897, crebi_22108299 hear_left veh_sride_lof_mo istat3_18500982, mesc_gof_mouse_gpi83_gd; vrt_00000000_mouse_embryonic_fibroblast inniaa_10714383_e18dot5_liver_lof_mouse_g	ENCODE Histone Modifications 2015 H3K27ac, liver,mm9 H3ac,myocyte,mm9 H3K27ac, CH12 LX,mm8 H3K3ac, skeletal mosde myoblast, hg19 H3K27ac, cerebellum,mm9
Transcription Factor PPIs PRARGCIA NR4A1 ATF1 CREM GLI1	Genome Browser PWMs GKCGCNNNNNNTGAYG UNKNOWN VSPXR.Q2 VSAHR.Q5 VSGNCF_01 CAGNYGKNAAA_UNKNOWN	

📣 Enrichr		Login Register
Transcription Pathways Onto	ologies Disease/Drugs Cell Ty	pes Misc Legacy Crowd
Description Sample gene list (375 gene	s)	
KEGG 2016 0	WikiPathways 2016	ARCHS4 Kinases Coexp 0
Metabolic pathways, Homo sapiens, hsa0111 Glyonylate and dicarboxylate metabolism, H Tyrosine metabolism, Homo sapiens, hsa003 Carbon metabolism, Homo sapiens, hsa0120 Nets Alarine Techolism, Homo sapiens, hs	Micochondrial Gene Expression, Mus muscu Micochondrial Gene Expression, Homo saple Antino Acid metabolism, Mus musculus, WHF NAD Inosynthesis II (Kron trystophan), Hom Methylation 75 thways, Homo saplens, WP70	TRPM7, human, kinase, ARCH54, coexpressio AAK1, human, kinase, ARCH54, coexpression CDK17, human, kinase, ARCH54, coexpression ICK, human, kinase, ARCH54, coexpression STK16, human, kinase, ARCH54, coexpression
Reactome 2016 0	BioCarta 2016	HumanCyc 2016 🛛 🕄
Metabolism of water-soluble vitamins and c Glycogen synthesis Homo sapienz RHSA-33 Metabolism Homo capiens RHSA-1430728 Gamma carbooylidion, hyusine formation i Metabolism Homo acid catabolism Hom	RNA polymerase III transcription. Homo sap Visceral Fat Deposits and the Metabolic Sync SODD/TNFRT Signaling Pathway. Homo sapik CARMI and Regulation of the Estrogen Rece IL 4 signaling pathway. Homo sapiens, h. JI4P	glycogen biosynthesis Homo sapiens PWV- tryptophan degradation Homo sapiens Tky Lisynurenine degradation Homo spiens, Pi Supergathway of tryptophan utilization, Hom Wilne stegradation_Homo sapiens_VALDEG-I
NCI-Nature 2016 Integrins in angiogenesis, Homo sapiens, 20	Panther 2016 Beta1 adrenergic receptor signaling pathwa	BioPlex 2017
LPA4-mediated signaling events_Homo sapir Alpha4 beta1 integrin signaling events_Hom Stabilization and expansion of the E-cadheri Beta3 integrin cell surface interactions_Hom	Beta2 adrenergic receptor signaling pathwe Metaborropic glutamate receptor group II p Insulin/IGF pathway-mitogen activated prot Muscarinic acetylcholine receptor 2 and 4 si	KERA GABRG2 SPPL28 HSPD1
huMAP 0	PPI Hub Proteins	KEA 2015 0
ETFA MRPS30 PREARZA MRPC17 CU38	CDK5 231403 PPP281A SKP1 ACTA1	CDK5 MAPK10 PDPK1 PDK1 7LR2
LINCS L1000 Kinase Perturbations down GABRP_knockdown_56h_PC3 HRHI_knockdown_56h_MCC7 BIK7_knockdown_56h_AC77 BIK7_knockdown_56h_AC75 BIK7_knockdown_56h_AC75	LINCS L1000 Kinase Perturbations up TNIK knockdown 96h MCF7 CKR2; knockdown 96h MCF7 BDRR22; knockdown 96h MCF7 FE5; knockdown 96h MCF7 PIKSCA knockdown 96h A375	Kinase Perturbations from GEO down CKK inockown 130, G530816 AKT1 activemutant 216, G529484 STK11 kinockout 278, G5234866 ARL kinockout 278, G5234869 AKT1 kinockout, 214, G5239699

Enrichr		Login Regis
anscription Pathways Ont	ologies Disease/Drugs Cell Ty	pes Misc Legacy Crowd
scription Sample gene list (375 gene	s)	
LINCS L1000 Chem Pert Up CFC006, PC3, 24H-BRD-X35716340-12.0 CFC009, PC3, 24H-BRD-X459716340-12.0 CFC009, PC3, 24H-BRD-X45974, maleate-10.0 CFC005, 3375, 24H-BRD-, 70c-10.0 CFC005, 3375, 24H-BRD-, 70c-10.0 CFC005, 24XH-BH-Puromycin, hydrochloride	LINCS L1000 Chem Pert down crcco7 J&se 24H-mis-007547,0001-10.0 crcco3 VGAP enterptes, buildingblock:04-1 crcco6, 56/23 enterptes, betabanine-10.0 crcco5 VCAP.24Hist, betabanine-10.0 crcco17 VGAP 24H-24, 93426, hydrochloride	DSigDB Outabain, HL60, DOWN digtoxgenin, HL60, DOWN stopphanthian, HL60, DOWN digtoxigenin, HL60, DOWN ligtoxin, HL60, DOWN ligtoxin, HL60, DOWN
LINCS L1000 Ligand Perturbations up IGFI-MCF7 HBGF-HIZ0 EPG-MCF7 HGF-MCF7 HGF-MCF7	LINCS L1000 Ligand Perturbations down EPR-SKBR3 ICE-SKBR3 MCSHMCF7 PDGFBB-SKBR3 HBEG-SKBR3	ARCHS4 IDG Coexp PRKRA, IDG, kinase, ARCHS4, coexpression DGKH, IDG, kinase, ARCHS4, coexpression TMEM388, IDG, Jonchannel, ARCHS4, coexpression GLRN3, IDG, Jonchannel, ARCHS4, coexpression GLRN3, IDG, Jonchannel, ARCHS4, coexpression
Carbon Tetrachloride-400 mg/kg in Corn C Carbon Tetrachloride-400 mg/kg in Corn C 44-Methylenedianilme 31 mg/kg in Corn C Allopunnel-175 mg/kg in Corn Oil-Rat-Kidn Econazole 334 mg/kg in Corn Oil-Rat-Liver- Qytarabime-47 mg/kg in Saline-Rat-Liver-Si	Old CMAP up phenanthridinone-1115 haloperidol-2039 hexamethomum bromide-1982 duphemanil metilsulfate-1912 Sc 19220-7065	Old CMAP down bupropion-1564 helveticoside-3945 strophanthidin-2525 flunkin-2552 feastupine-3259
GeneSigDB	OMIM Disease glycogen storage, disease leigh, syndrome cardiomyopathy_hypertiophic neuropathy blood	OMIM Expanded glycogen_storage_disease leigh_syndrome polydactyly cardiomyopathy_hypertrophic complex_j
VirusMINT Human papillomavirus type 8 Epstein-Barr virus (strain 895-8) Bovine papillomavirus type 1 Human papillomavirus type 11	MSigDB Computational MODULL /8 GCM.SIR72 MODULL 43 MODULL 21 MODULL 227	MSigDB Oncogenic Signatures Artup More David DN More UPNAVI, DN ESC, VS. JUL, UP MOR, UPNAVI, UP GCNP, SHH, UP EARLYN, UP

WEB-based GEne SeT AnaLysis Toolkit

WebGestalt Translating gene lists into biological insights...

http://www.webgestalt.org/option.php

ORA Sample Run | GSEA Sample Run | NTA Sample Run | External Examples | Manual | Citation | User Forum

» Basic Parameters	
Select Organism of Interest 🕖	C Organisms
Select Method of Interest 🕖	(Methods +
Select Functional Database 0	(Functional Database Class +
	(Functional Database Name +
Gene List	
Select Gene ID Type 🕖	(Gene ID Type 🛟)
	Choose File No file chosen Reset
Upload Gene List (max size: 5 MB) 0	OR
	Please enter gene ids Clear
Reference Gene List	
	Reference Gene Set +
Select Reference Set for Enrichment Analysis 🕻	Reset
	OR
Upload User Reference Set File (max size: 5 MB)	Reference Gene ID Type +
and Select ID Type 🕖	Choose File No file chosen Reset

GOView | WebGestaltR | WebGestalt 2013

Submit

» Advanced parameters

Browser support: PC: Google Chrome 56.0 or later, Mac: Google Chrome 56.0, Safari 10.0 or later. We strongly recommend upgrading to the latest version of the supported broswers. For Safari users, please enable Flash for network visualization. Detailed information on how to enable Flash can be found here.

WebGestalt is currently developed and maintained by Jing Wang, Suhas Vasaikar, Zhiao Shi and Bing Zhang at the Zhang Lab. Other people who have made significant contribution to the project include Dexter Duncan, Stefan Kirov and Jay Snoddy.

Funding credits: NIH/NCI (U24 CA210954); Leidos (15X038); CPRIT (RR160027); NIH/NIAAA (U01 AA016662, U01 AA013512); NIH/NIDA (P01 DA015027); NIH/NIMH (P50 MH078028, P50 MH096972); NIH/NCI (U24 CA159988); NIH/NIGMS (R01 GM088822).

Introduction

WebGestalt (WEB-based Gene SeT AnaLysis Toolket) is a functional enrichment analysis web tool, which has been visited 209,028 times by 84,024 unique users from 144 countries and territories since 2013 according to Google Analytics. The WebGestalt 2005 and WebGestalt 2013 papers have been cited in 1179 scientific papers since 2013 according to Google Scholar.

WebGestalt 2017 significantly increased the number of supported organisms, gene identifiers, and functional categories in WebGestalt. Notably, experimental data from organisms or with gene identifiers not covered by the WebGestalt database can also be analyzed in WebGestalt. WebGestalt also supports three well-established and complementary methods for enrichment analysis, including Over-Representation Analysis (ORA), Gene Set Enrichment Analysis (GSEA), and Network Topology-based Analysis (NTA). To facilitate easy exploration and better understanding of the enrichment results, we have revamped the output interface with a userfriendly, tab-based, and interactive report. We have also developed a companion tool GOView that can help visualize and compare multiple Gene Ontology (GO) enrichment results under the GO Directed Acyclic Graph (DAG) structure.

Data Source

News

ORA Sample Run | GSEA Sample Run | NTA Sample Run | External Examples | Manual | Citation | User Forum

GOView | WebGestaltR | WebGestalt 2013

> Basic Parameters	
Select Organism of Interest 🕖	hsapiens
Select Method of Interest 🕖	Overrepresentation Enrichment Analysis (ORA)
Select Functional Database 🕖	geneontology ᅌ
	Biological_Process
Gene List	
Select Gene ID Type 🕖	genesymbol
	Choose File No file chosen Reset
Upload Gene List (max size: 5 MB) 🕖	OR
	ABCA1 ABCC9 ABCE1
Reference Gene List	Clear
Select Reference Set for Enrichment Analysis 0	Reset
	OR
Upload User Reference Set File (max size: 5	Reference Gene ID Type 💠
мв) and Select ID Type 🕖	Choose File No file chosen Reset

User ID Mapping Table GOSIim Summary

Enrichment Results

Summary (Result Download)

Enrich method: ORA

Organism:hsapiens

Enrichment Categories: geneontology_Biological_Process

Interesting gene list: textAreaUpload_1506444918.txt. ID type: genesymbol

The interesting gene list contains 487 user IDs in which 478 user IDs are unambiguously mapped to the unique Entrez Gene IDs and 9 user IDs are mapped to multiple Entrez Gene IDs or could not be mapped to any Entrez Gene ID. The GO Slim summary are based upon the 478 unique Entrez Gene IDs.

Among the 478 unique Entrez Gene IDs, 464 IDs are annotated to the selected functional categories and also in the reference gene list, which are used for the enrichment analysis.

Reference gene list: all mapped Entrez Gene IDs from the selected platform genome_protein-coding

The reference gene list contains 20691 IDs and 16258 IDs are annotated to the selected functional categories that are used as the reference for the enrichment analysis.

Parameters for the enrichment analysis:

- Minimum number of Entrez Gene IDs in the category:5
- Maximum number of Entrez Gene IDs in the category:2000
- · FDR Method:BH
- Significance Level: Top10

Based on the above parameters, 10 categories are identified as enriched categories and all are shown in this report.

Summary User ID Mapping Table GOSlim Summary Enrichment Results

Mapped User IDs

userid	Gene Symbol	Gene Name	Entrez Gene
CD24	CD24	CD24 molecule	100133941
ABCC9	ABCC9	ATP binding cassette subfamily C member 9	10060
PTPRU	PTPRU	protein tyrosine phosphatase, receptor type U	10076
PQBP1	PQBP1	polyglutamine binding protein 1	10084
AKAP9	AKAP9	A-kinase anchoring protein 9	10142
CDH17	CDH17	cadherin 17	1015
DHRS2	DHRS2	dehydrogenase/reductase 2	10202
CDK8	CDK8	cyclin dependent kinase 8	1024
EFS	EFS	embryonal Fyn-associated substrate	10278
BCAS2	BCAS2	BCAS2, pre-mRNA processing factor	10286
SF3A1	SF3A1	splicing factor 3a subunit 1	10291
CNPY2	CNPY2	canopy FGF signaling regulator 2	10330
TFG	TFG	TRK-fused gene	10342
CITED2	CITED2	Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 2	10370
TIMM17A	TIMM17A	translocase of inner mitochondrial membrane 17A	10440
MCRS1	MCRS1	microspherule protein 1	10445
ZNHIT1	ZNHIT1	zinc finger HIT-type containing 1	10467

User IDs mapped to multiple Entrtez IDs or not mapped

userid
ADRBK1
C12orf11
CXCR7
DFNB31
KIAA0182
MLL3
NHP2L1
PAK7
SNHG3-RCC1

User ID Mapping Table **GOSlim Summary** Enrichment Results Summary

dev

ellular

GOSlim summary for the user list genes

Each Biological Process, Cellular Component and Molecular Function category is represented by a red, blue and green bar, repectively The height of the bar repr

Bar chart of Biological Process categories Bar chart of Cellular Component categories Bar chart of Molecular Function categories Ø 00 Ø 44 47 44 500 500 500 410 386 362 400 400 400 305 265 258 257 300 253 300 300 27 200 200 200 000 μ 000 8 100 100 100 5333 1835833 9 Ø 0 0 ٥ all biological regulation process organization localization metabolic process stimulus process cell communication proliferation multi-organism process unclassified reproduction growth unclas mem ed d encapsulating s uncl endomembrane cell pr extracellulă lipid organismal elopmental antioxidan Ō response to macromolecular embrane-enclose protei υ ğ nito regulat Golgi endoplasmic gula electron car bohydı cell 0 C component extrac nucle 202 molecula anslation ar tructura

a

ecular enzym

õ

Ü

Summary User ID Mapping Table GOSlim Summary Enrichment Results

Detailed information of the enriched categories

The statistics () for the enriched categories and the genes in the user gene list and also in the category are listed in the table.

(ID Search

Download Table

ID:GO:0006468 Name:protein phosphorylation

C=1824; O=134; E=51.72; R=2.59; PValue=0e+00; FDR=0e+00

userid	Gene Symbol	Gene Name	Entrez Gene
CD24	CD24	CD24 molecule	100133941
AKAP9	AKAP9	A-kinase anchoring protein 9	10142
CDK8	CDK8	cyclin dependent kinase 8	1024
CAMKK2	CAMKK2	calcium/calmodulin dependent protein kinase kinase 2	10645
COPS8	COPS8	COP9 signalosome subunit 8	10920
PWP1	PWP1	PWP1 homolog, endonuclein	11137
CHEK2	CHEK2	checkpoint kinase 2	11200
IRAK3	IRAK3	interleukin 1 receptor associated kinase 3	11213
ADCY8	ADCY8	adenylate cyclase 8	114
CHUK	СНИК	conserved helix-loop-helix ubiquitous kinase	1147
CSNK1A1L	CSNK1A1L	casein kinase 1 alpha 1 like	122011
CNTN1	CNTN1	contactin 1	1272
	100044	adapaaina Ad raaantar	494

1 Q 🖉

KEGG

+

Search Help

» Japanese

KEGG Home Release notes

Current statistics Plea from KEGG

KEGG Database

KEGG overview Searching KEGG KEGG mapping Color codes

KEGG Objects

Pathway maps Brite hierarchies

KEGG Software KegTools KEGG API KGML

KEGG FTP Subscription

GenomeNet

DBGET/LinkDB

Feedback

Kanehisa Labs

KEGG: Kyoto Encyclopedia of Genes and Genomes

KEGG is a database resource for understanding high-level functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies (See Release notes for new and updated features).

KEGG2	KEGG Table of Contents Update notes
Data-oriented enti	ry points
KEGG PATHWAY	KEGG pathway maps [Pathway list]
KEGG BRITE	BRITE functional hierarchies [Brite list]
KEGG MODULE	KEGG modules [Module list]
KEGG DISEASE	Human diseases [Cancer Infectious disease]
KEGG DRUG	Drugs [ATC drug classification]
KEGG ORTHOLOGY	Ortholog groups [KO system]
KEGG GENOME	Genomes [KEGG organisms]
KEGG GENES	Genes and proteins Release history
KEGG COMPOUND	Small molecules [Compound classification]
KEGG REACTION	Biochemical reactions [Reaction modules]
Entry point for wid	ler society
KEGG MEDICUS	Health-related information resource
Organism-specific	entry points
KEGG Organisms	Enter org code(s) Go hsa hsa ecc
Analysis tools	
KEGG Mapper	KEGG PATHWAY/BRITE/MODULE mapping tools
KEGG Atlas	Navigation tool to explore KEGG global maps
KAAS	KEGG automatic annotation server
BLAST/FASTA	Sequence similarity search
SIMCOMP	Chemical structure similarity search
Death Duraid	Riedearadation /biogunthesis nathway prediction

http://www.genome.jp/kegg/

KEGG2 PAT	HWAY BRITE MODUL	E KO GENOME GENES	LIGAND DISEASE DRUG DBGET		
Search KEGG \$ for Go Clear					
Category	Entry Point	Search & Compute	DBGET Search		
Systems information	KEGG PATHWAY KEGG BRITE KEGG MODULE KEGG Mapper KEGG Atlas	Search Pathway Search Brite Reconstruct Module Map Taxonomy	PATHWAY BRITE MODULE		
	KEGG ORTHOLOGY KEGG Annotation	BlastKOALA <i>New!</i> KO system	ORTHOLOGY		
Genomic information	KEGG GENOME KEGG GENES KEGG Organisms [Species Genus]	SSDB search OC viewer† BLAST† / FASTA† KAAS†	GENOME GENES DGENES MGENOME† MGENES†		
Chemical information	KEGG LIGAND KEGG COMPOUND KEGG GLYCAN KEGG REACTION Reaction Modules	SIMCOMP ⁺ / SUBCOMP ⁺ KCaM ⁺ PathSearch ⁺ PathComp ⁺ PathPred ⁺ E-zyme ⁺	COMPOUND GLYCAN REACTION RPAIR RCLASS ENZYME		
Health information	KEGG DISEASE KEGG DRUG KEGG ENVIRON KEGG MEDICUS	MEDICUS search Drug interaction checker Human diseases Infectious diseases ATC drug classification	DISEASE DRUG DGROUP ENVIRON		

KEGG is developed by Kanehisa Laboratories. See Kanehisa et al. (2014) for updates of KEGG. + Developed and maintained by Kyoto University Bioinformatics Center as part of its GenomeNet service.

KEGG2 PATHWAY BRITE	MODULE DISEASE	RUG KO GENOME	GENES LIGAND	DBGET	
Select prefix	Enter keywords		_		
map Organism			lo Help		
Pathway Maps					
KEGG PATHWAY is a colle representing our knowledge	tion of manually drawn pa on the molecular interaction	thway maps (see new on and reaction networ	maps and update h rks for:	iistory)	
1. Metabolism					
Global/overview Car Cofactor/vitamin Te	Global/overview Carbohydrate Energy Lipid Nucleotide Amino acid Other amino Glycan				
2. Genetic Information Processing					
3. Environmental Info	mation Processing				
4. Cellular Processes 5. Organismal System					
6. Human Diseases	,				
and also on the structure re	ationships (KEGG drug st	ucture maps) in:			
7. Drug Development					

Pathway Mapping

KEGG PATHWAY mapping is the process to map molecular datasets, especially large-scale datasets in genomics, transcriptomics, proteomics, and metabolomics, to the KEGG pathway maps for biological interpretaion of higher-level systemic functions.

- Search Pathway basic pathway mapping tool
- Search&Color Pathway advanced pathway mapping tool
- Color Pathway selected pathway map coloring tool

KECC

4

) 4 F

check / uncheck

About KEGG Atlas

KEGG Pathway Maps

man	ko	m	hea	000	odt
map	ĸ		IISa	600	Buil

Metabolism

01100 Metabolic pathways

01110 Biosynthesis of secondary metabolites

01120 Microbial metabolism in diverse enviro

01200 Carbon metabolism

01210 2-Oxocarboxylic acid metabolism

01230 Biosynthesis of amino acids

01220 Degradation of aromatic compounds

▼ Layer

KEGG Module

Energy metabolism

Carbon fixation

- M00165 Reductive pentose phosphate c
- M00166 Reductive pentose phosphate c
- M00167 Reductive pentose phosphate c
- M00168 CAM (Crassulacean acid metab
- M00169 CAM (Crassulacean acid metab
- M00172 C4-dicarboxylic acid cycle, NAE
- M00171 C4-dicarboxylic acid cycle, NAE
- M00170 C4-dicarboxylic acid cycle, pho
- M00173 Reductive citrate cycle (Arnon-E
- M00579 Phosphate acetyltransferase-ac

Nitrogen metabolism

M00175 Nitrogen fixation, nitrogen => ar
Methane metabolism

M00567 Methanogenesis, CO2 => meth

M00174 Methane oxidation, methanotrop

Sulfur metabolism

■ M00176 Assimilatory sulfate reduction, €

Carbohydrate and lipid metabolism

Central carbohydrate metabolism M00001 Glycolysis (Embden-Meyerhof p M00002 Glycolysis, core module involvir M00003 Gluconeogenesis, oxaloacetate M00307 Pyruvate oxidation, pyruvate => M00009 Citrate cycle (TCA cycle, Krebs M00010 Citrate cycle, first carbon oxidat M00011 Citrate cycle, first carbon oxidat M00004 Pentose phosphate pathway (Pe M00006 Pentose phosphate pathway, ox M00007 Pentose phosphate pathway, ox M00007 Pentose phosphate pathway, ox

╡┋┇╓╢╪┇╶╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴
A REPORTING CONTRACTOR AND A READARD CONTRACTOR AND A READARD AND A READARD AND A READARD AND A READARD AND A READ A

KEGG

- = + P Q

Other Pathway Databases

Tweet to @reactome

http://www.reactome.org/

PC Pathway Commons

Search and visualize public biological pathway information. Single point of access. [more...]

ome Data Sources Download FAQ Web Service About

Send us your feedback. Sign up for Pathway Commons announcements. D RSS Feed

Search Pathway Commons:

Find Pathways Find Molecules
Search
For example, if you enter: BRCA1, you will get back
the list of pathways containing the keyword
"BRCA1", and the list of pathways that contain the
BRCA1 gene.

Current filter settings: All Organisms, All Data Sources. <u>Set filters.</u>

What's New:

- NEWI May 28, 2013:
 - This portal will not be updated in the future and we are working on a replacement Pathway Commons service for expected release in mid-2013.
 - We encourage you to test <u>the new service</u> and switch to it once it is released.
 Please send us questions and feedback.
- Oct 27, 2011:
 - BioGRID data set (September 25, 2011 Version 3.1.81).
 - IntAct data set (September 29, 2011 Version 3.1.17288).
 - Nature Pathway Interaction data set (October 12, 2011).
 - Reactome data set (September 20, 2011 Version 38).
- June 24, 2011:
 - BioGRID data set (May 1, 2011 Version 3.1.76).
 HumanCyc data set (June 8, 2011 Version 15.1).
 - Nature Pathway Interaction data set (June 14,
 - 2011).
- April 25, 2011:
 - Reactome data set (March 15, 2011 Version 36).
 - IntAct data set (February 3, 2011 Version 138).
 MetaCyc removed due to organism generic pathways
 - will be brought back when these pathways are

Computational biologists: Download an integrated set of pathways in BioPAX format for global analysis. Software developers: Build software on top of Pathway Commons using our web service API. Download and install the <u>cPath software</u> to create a local mirror. Current Data Sources:

Biologists: Browse and search pathways across multiple

Pathway Commons currently contains the following data sources (batch download):

Pathway Commons Quick Stats:

Using Pathway Commons:

valuable public pathway databases.

Number of Pathways:	1,668
Number of Interactions:	442,182
Number of Physical Entities:	86,282
Number of Organisms:	414

Integration of additional data sources is planned in the near future. For a comprehensive directory of interaction and pathway databases, please refer to Pathquide.

Citing Pathway Commons:

To cite the Pathway Commons Project: Cerami et al. Pathway Commons, a web resource for biological pathway data. Nucl. Acids Res. (2010) <u>doi: 10.1093/nar/gkq1039</u>

To cite the cPath Software: Cerami et al. cPath: open source software for collecting, storing, and querying biological pathways. BMC Bioinformatics. (2006) doi:10.1186/1471-2105-7-497

http://www.pathwaycommons.org/

STRING

© STRING CONSORTIUM 2017	ABOUT	INFO	ACCESS	CREDITS
SIB - Swiss Institute of Bioinformatics	Content	Scores	Versions	Funding
310	References	Use scenarios	APIs	Datasources
CPR - NNF Center for Protein Research	Contributors	FAQs	Licensing	Partners
EMBL - European Molecular Biology Laboratory	Statistics	Cookies/Privacy	Usage	Software

This is the evidence view. Different line colors represent the types of evidence for the association.

(requires Flash player 10 or better)

Cytoscape

Small and Large networks

Human Interactome Visualization: Cytoscape can handle large network data sets

All Apps

Categories

E 🔺

network generation online data import graph analysis data visualization integrated analysis utility clustering ontology analysis enrichment analysis scripting

more »

Featured Apps

PSICQUIC Web Service Client for importing interactions from public

PSICQUICUniversalClient

ClueGO Creates and visualizes a functionally grouped network of

BiNGO BiNGO

Calculates overrepresented GO terms in the network and display

DynNetwork

Visualize dynamic networks in Cytoscape 3.0

Top Voted Apps

CytoKegg

ClueGO

ClueGO Creates and visualizes a functionally grouped network of

Identify Kegg pathways associated to specific

GENEMANIA

PathExplorer

GeneMANIA

Finds paths, filters them based on node and edge attributes and

Imports interaction networks from

public databases from a list of

Top Downloaded Apps

Creates and visualizes a

functionally grouped network of

MCODE 🖧 MCODE

Clusters a given network based on topology to find densely

GENEMANIA

jActiveModules

GeneMANIA

Finds clusters where member nodes show significant changes

Imports interaction networks from

public databases from a list of

Bingo BiNGO

Calculates overrepresented GO terms in the network and display them as a network of significant GO terms.

★★★★☆ (21) 2639 downloads 3.0

BiNGO

Details Release History

Categories: enrichment analysis, GO annotation, ontology analysis

BiNGO is a tool to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. BiNGO maps the predominant functional themes of a given gene set on the GO hierarchy, and outputs this mapping as a Cytoscape graph. Gene sets can either be selected or computed from a Cytoscape network (as subgraphs) or compiled from sources other than Cytoscape (e.g. a list of genes that are significantly upregulated in a microarray experiment). The main advantage of BiNGO over other GO tools is the fact that it can be used directly and interactively on molecular interaction graphs. Another plus is that BiNGO takes full advantage of Cytoscape's versatile visualization environment. This allows you to produce customized high-quality figures. Features include :

- 1. Assessing over-representation or under-representation of GO categories
- 2. Graph or gene list input
- 3. batch mode: analyze several clusters simultaneously using same settings
- 4. Different GO and GOSlim ontologies
- 5. Wide range of organisms
- 6. Evidence code filtering
- 7. Hypergeometric or binomial test for over-representation
- 8. Multiple testing correction using Bonferroni (FWER) or Benjamini&Hochberg (FDR) correction
- 9. Interactive visualization of results mapped on the GO hierarchy
- 10. Extensive results in tab-delimited text file format
- 11. Make and use custom annotations, ontologies and reference sets
- 12. Open source

If you use BiNGO in your research, please cite:

Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. *Bioinformatics* 21, 3448-3449. (PubMed)

BIOINFORMATICS APPLICATIONS NOTE

IOTE Vol. 30 no. 1 2014, pages 135–136 doi:10.1093/bioinformatics/btt598

Systems biology

Advance Access publication October 21, 2013

BEReX: Biomedical Entity-Relationship eXplorer

Minji Jeon¹, Sunwon Lee², Kyubum Lee², Aik-Choon Tan³ and Jaewoo Kang^{1,2,*} ¹Interdisciplinary Graduate Program in Bioinformatics, ²Department of Computer Science and Engineering, Korea University, Seoul, Korea and ³Department of Medicine/Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA Associate Editor: Mario Albrecht

ABSTRACT

Summary: Biomedical Entity-Relationship eXplorer (BEReX) is a new biomedical knowledge integration, search and exploration tool. BEReX integrates eight popular databases (STRING, DrugBank, KEGG, PhamGKB, BioGRID, GO, HPRD and MSigDB) and delineates an integrated network by combining the information available from these databases. Users search the integrated network by entering key words, and BEReX returns a sub-network matching the key words. The resulting graph can be explored interactively. BEReX allows users to find the shortest paths between two remote nodes, find the most relevant drugs, diseases, pathways and so on related to the current network, expand the network by removing or adding selected nodes. BEReX is implemented as a standalone Java application.

Availability and implementation: BEReX and a detailed user guide are available for download at our project Web site (http://infos.korea.ac. kr/berex).

Contact: kangj@korea.ac.kr

Supplementary Information: Supplementary methods and user guide are available at *Bioinformatics* online.

BEReX: Biomedical Entity-Relationship eXplorer

(Collaboration with Dr. Jaewoo Kang, Korea University)

iBEReX (http://iberex.korea.ac.kr/)

ubiguitination

Molecular Function

Chemical Compound

extracellular region, protein complex, centrosome

Expand Expand Expand by Gene/Protein Expand by Disease/Symptom Expand by Drug Expand by Pathway Expand by Gene Ontology(Biological Process) Expand by Gene Ontology(Molecular Function) Expand by Gene Ontology(Cellular Component) Expand by miRNA Expand by Transcription Factor Add shortest paths See enriched gene ontology terms

Settings... Global Settings... About Adobe Flash Player 15.0.0.152...

EGFR

UBC

AKT

(Collaboration with Dr. Jaewoo Kang, Korea University)

response to drug, regulation of transcription from RNA polymerase II promoter, protein

zinc ion binding, sequence-specific DNA binding transcription factor activity, protein

homodimerization activity, metal ion binding, receptor binding, protein kinase activity

extracellular vesicular exosome, integral to membrane, integral to plasma membrane,

endoplasmic reticulum membrane, endoplasmic reticulum, Golgi apparatus, Golgi membrane,

Take Home Message

- Motivation to do gene list enrichment analysis.
- Choose the right statistics for the enrichment analysis – depending on what you want to ask.
- Use p-values carefully.
- Many enrichment tools are available, test multiple tools.
- Use interactive visualization tools to present your enriched lists of genes.