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Outline

 |Introduction
« Data, features, classifiers, Inductive learning
+ (Selected) Machine Learning Approaches

— Decision trees

— Naive Bayes

— Support Vector Machines

— Clustering

* Model evaluation



Steps in Class prediction problem

Data Preparation

Feature selection

— Remove irrelevant features for constructing the classifier (but may have
biological meaning)

— Reduce search space in H, hence increase speed in generating
classifier

— Direct the learning algorithm to focus on “informative” features

— Provide better understanding of the underlying process that generated
the data

Selecting a machine learning method
Generating classifier from the training data
Measuring the performance of the classifier
Applying the classifier to unseen data (test)
Interpreting the classifier
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“Big Data” Focussed Processed
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Data: Samples and Features
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Cancer Classification Problem

REPORTS

Molecular Classification of
Cancer: Class Discovery and
Class Prediction by Gene

Expression Monitoring

T. R. Golub,’?*t D. K. Slonim,'} P. Tamayo,” C. Huard,’
M. Gaasenbeek,’ ). P. Mesirov,’ H. Coller,” M. L. Loh,?
J. R. Downing,? M. A. Caligiuri,* C. D. Bloomfield,*

(Science 286:531-537, 1999) E. S. Lander™5*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known classes (class prediction). Here, a generic
approach to cancer classification based on gene expression monitoring by DNA
microarrays is described and applied to human acute leukemias as a test case.
A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor
was able to determine the class of new leukemia cases. The results demonstrate
the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer
classes for other types of cancer, independent of previous biological knowledge.



Cancer Classmcatlon Problem
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Cancer Classification Problem
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(Science 286:531-537, 1999)

Fig. 1. Schematic illustration of methodology. (A) Neighborhood analysis. The class distinction is
represented by an “idealized expression pattern” c, in which the expression level is uniformly high
in class 1 and uniformly low in class 2. Each gene is represented by an expression vector, consisting
of its expression level in each of the tumor samples. In the figure, the data set is composed of six
AMLs and six ALLs. Gene g, is well correlated with the class distinction, whereas g, is poorly
correlated. Neighborhood analysis involves counting the number of genes having various levels of
correlation with c. The results are compared to the corresponding distribution obtained for random
idealized expression patterns c*, obtained by randomly permuting the coordinates of c. An
unusually high density of genes indicates that there are many more genes correlated with the
pattern than expected by chance. The precise measure of distance and other methodological details
are described in (76, 77) and on our Web site (www.genome.wi.mit.edu/MPR). (B) Class predictor.
The prediction of a new sample is based on "weighted votes" of a set of informative genes. Each
such gene g, votes for either AML or ALL, depending on whether its expression level x; in the sample
is closer to ju,,,, OF ., (Which denote, respectively, the mean expression levels of AML and ALL
in a set of reference samples). The magnitude of the vote is wy,, where w; is a weighting factor that
reflects how well the gene is correlated with the class distinction and v, = |x, — (wap + wan)/2!
reflects the deviation of the expression level in the sample from the average of w,,, and p,,,. The
votes for each class are summed to obtain total votes V,,, and V, . The sample is assigned to the
class with the higher vote total, provided that the prediction strength exceeds a predetermined
threshold. The prediction strength reflects the margin of victory and is defined as (V,,,, —
Vigse)/ (Vin + Viose) Where V.. and V,__, are the respective vote totals for the winning and losing
classes. Methodological details are described in (79, 20) and on the Web site.



n genes

Gene Expression Profile

m samples
. .| Condition | Condition Condition
Geneid
1 2 m
Genel | 103.02 58.79 101.54
Gene2| 40.55 1246.87 1432.12
Gene n| 78.13 66.25 823.09




A (very) Brief Introduction to
Machine Learning
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To Learn

“ ... to acquire knowledge of (a subject) or skill in (an art,
etc.) as a result of study, experience, or teaching...”
(OED)

What is Machine Learning?

“ ... a computer program that can learn from experience with
respect to some class of tasks and performance measure ... "~
(Mitchell, 1997)
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Broader context

* What is learning?
— Memorizing?
— Prediction?



Key Steps of Learning

 Learning task
— what is the learning task?

» Data and assumptions
— what data is available for the learning task?
— what can we assume about the problem?

» Representation
— how should we represent the examples to be classified

* Method and estimation
— what are the possible hypotheses?
— how do we adjust our predictions based on the feedback?

 Evaluation
— how well are we doing?

» Model selection
— can we rethink the approach to do even better?



Learning Tasks

 Classification — Given positive and negative
examples, find hypotheses that distinguish these
examples. It can extends to multi-class
classification.

« Characterisation — Given positive examples, find
hypotheses that describe these examples.

* Clustering — Given a set of unlabelled examples,
find clusters for these examples (unsupervised
learning)



Learning Approaches

« Supervised approach — given predefined
class of a set of positive and negative
examples, construct the classifiers that
distinguish between the classes <X, y>

* Unsupervised approach — given the
unassigned examples, group together the
examples with similar properties <x>
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Representation

There are many ways to represent the same information

st B T B B

S = (x,y)
Where x € {1, 0} (red, )

Andy e {-1, +1} (Normal, Cancer)

I Concer

o 1 1 1  +1

The choice of representation may determine whether the learning task

is very easy or very difficult



Concept Learning

Given a set of training examples S = {(x1,y1),...,(xm,ym)} where X is the
instances usually in the form of tuple <x1,...,xn> and y 1s the class label, the
function y = f(x) is unknown and finding the f(x) represent the essence of
concept learning.

For a binary problem y € {1,0}, the unknown function /:X—{1,0}.
The learning task is to find a hypothesis h(x) = f(x) for xeX

Training examples <x, f(x)> where:
f(x) =1 are Positive examples,
f(x) =0 are Negative examples.

HH1s the set of all possible hypotheses, where 2:X —{1,0}

A machine learning task:
Find hypothesis, /#(X) = c(x); xeX.
(in reality, usually ML task is to approximate 4(x) = c(x))



Inductive Learning

* Given a set of observed examples

* Discover concepts from these examples
— class formation/partition
— formation of relations between objects
— patterns



Learning paradigms

» Discriminative (model Pr(y|x))

— only model decisions given the input examples;
no model is constructed over the input
examples

« Generative (model Pr(x|y))

— directly build class-conditional densities over
the multidimensional input examples

— classify new examples based on the densities



Decision Trees

Widely used - simple and practical
Quinlan - ID3 (1986), C4.5 (1993) & See5/C5 (latest)

Classification and Regression Tree (CART by Breiman et.al.,
1984)

Given a set of instances (with a set of properties/attributes),
the learning system constructs a tree with internal nodes as
an attribute and the /eaves as the classes

Supervised learning

Symbolic learning, give interpretable results



Information Theory - Entropy

Entropy — a measurement commonly used in information theory to
characterise the (im)purity of an arbitrary collection of examples

Entropy(S) =) — p,log, p,
i=1

where S is a collection of training examples with ¢ classes and p; is the
proportion of examples S belonging to class .

Example:

If S is a set of examples containing positive (+) and negative (-) examples (c
e {+,-}), the entropy of S relative of this boolean classification is:

Entropy(§)=-p, log, p, —p_log, p_

0 if all members of S belong to the same class

Entropy(S) = 1 if S contains an equal number of positive (+) and

negative (-) examples
Note™: Entropy | Purity 1



ID3 (Induction of Decision Tree)

Average entropy of attribute A

. S, |
Ea= Z S| Entropy(S)
vevalues(A)

v = all the values of attribute A, S = training examples, S, = training examples of
attribute A with value v

0 if all members of S belong to the same value v
. {

1 if S contains an equal number of value v examples
Note*: Entropy | Purity 1
Splitting rule of ID3 (Quinlan, 1986)

Information Gain

Gain(S, A) = Entropy(S) — Z 5,

vevalues(A) |S|

Entropy(S,)

Note*: Gain?t Purity 1



Decision Tree Algorithm

Function Decision_Tree Learning (examples, attributes, target)
Inputs: examples = set of training examples

attributes = set of attributes

target = class label

1. if examples is empty then return target

2. else if all examples have the same target then return target

3. else if attributes is empty then return most common value of target in examples
4. else

5. Best <-the attribute from attributes that best classifies examples

6 Tree <—a new decision tree with root attribute Best

7 for each value v, of Best do

8 examples<{elements with Best = v;}

9. subtree<—Decision_Tree Learning (examples, attributes-best, target)
10. add a branch to Tree with label v,and subtree subtree
11. end

12. return Tree

(c) AC TAN 2004 24



Training Data

Decision attributes

Independent condition attributes (dependent)
Day |outlook |[temperature |humidity |windy play
1|sunny hot high FALSE [no
2{sunny hot high TRUE |no
3|{overcast |hot high FALSE |[yes
4|rainy mild high FALSE [yes
5/rainy cool normal FALSE [yes
6lrainy cool normal TRUE |no
7/|overcast [cool normal TRUE |vyes
8lsunny mild high FALSE [no
9|sunny cool normal FALSE |[yes
10{rainy mild normal FALSE |yes
11|sunny mild normal TRUE [yes
12|overcast |mild high TRUE |yes
13|overcast |hot normal FALSE |[yes
14|rainy mild high TRUE |no

Today sunny cool high TRUE ?




Entropy(S)
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Decision Tree




Decision Trees (ounian, 1993

J48 pruned tree

TutlEOk Z sunnyh . 50 Values
umidity = high: no . (:;;;i}
| humidity = normal: yes (2.0) <OV6-EaSD
outlook = overcast: yes (4.0)
. X
outlook = rainy Hunndﬁy
| windy = TRUE: no | S |V\i|nc\ly
| windy = FALSE: yes 3 0)
‘@’ b CALSE
Number of Leaves @
-
Size of the tree : 8 ‘g Qc) Yes
Classes

Time taken to build model:

0.05 seconds
Time taken to test model on training data:

0 seconds



Converting Trees to Rules

lOutlIoo‘k
sunn _
overcast\ rainy
Humidity Windy
Yes
hig normal FALSE

TRU

No Yes No | | Ye€s

R1: IF Outlook = sunny A Humidity = high THEN play = No
R2: I[F Outlook = sunny A Humidity = normal THEN play = Yes
R3: IF Outlook = overcast THEN play = Yes

R4: IF Outlook = rainy A Windy = TRUE THEN play = No

RS5: IF Outlook = rainy A Windy = FALSE THEN play = Yes



Bayes Theorem

In machine learning we are interested to determine the best hypothesis h(x) from space
H, based on the observed training data x.

Best hypothesis = most probable hypothesis, given the data x with any initial knowledge
about the prior probabilities of the various hypothesis in H.

Bayes theorem provides a way to calculate
(i) the probability of a hypothesis based on its prior probability Pr(h(x))
(ii) the probabilities of the observing various data given the hypothesis Pr(x|h)
(iif) the probabilities of the observed data Pr(x)

We can calculate the posterior probability h(x) given the observed data x, Pr(h(x)|x)
using Bayes theorem.

Pr(x| h(x)) Pr(h(x))
Pr(x)

Pr(/(x) | x) =



Naive Bayes

(John & Langley, 1995)

temperature)

humidity

outlook

To use all attributes and allow them to make contributions to
the decision that are equally important and independent of
one another, given the class.



Naive Bayes Classifier

Vyp = argmax Pr(v, )1_[ Pr(a; |v;)

vjEV

Where v\g denotes the target value output by the naive Bayes classifer, Pr(v;)
is the probability of target value v, occurs in the training data,Pr(a;|v;) is the
conditionally independant probability of a; given target value v;.

Summary:

*The naive Bayes learning method involves a learning step in which the various
Pr(v;) and Pr(a;|v;) terms are estimated, based on their frequencies over the
training data.

*The set of these estimates corresponds to the learned hypothesis h(x).

*This hypothesis is then used to classify each new instance by applying the
above rule.

*There is no explicit search through the space of possible hypothesis, instead
the hypothesis is formed simply by counting the frequency of various data
combinations within the training examples.



Naive Bayes example

Today sunny cool

high

TRUE ?

Pr(Play = yes) = 9/14 = 0.64
Pr(Play = no) = 5/14 = 0.36

Pr(Outlook=sunny|Play = yes) = 2/9 =
0.22
Pr(Outlook=sunny|Play=no) = 3/5 = 0.60

Pr(Temperature = cool|Play = yes) =3/9 =
0.33

Pr(Temperature =cool|Play =no) =1/5 =
0.20

Pr(Humidity = high|Play = yes) = 3/9
=0.33
Pr(Humidity = high|Play = no) = 4/5 =0.80

Pr(Wind = TRUE|Play = yes) = 3/9 = 0.33
Pr(Wind = TRUE|Play = no) = 3/5 = 0.60

Pr(yes)Pr(sunny|yes)Pr(cool|yes)
Pr(high|yes)Pr(TRUE|yes)=
0.64*0.22*0.33*0.33"0.33 =
0.0051

Pr(no)Pr(sunny|no)Pr(cool|no)
Pr(high|no)Pr(TRUE|no)=
0.36*0.60*0.20*0.80*0.60 =
0.0207

Play = NO

Probability = 0.0207/(0.0207+0.0051)
=0.80 (80%)



Linear Model




Support Vector Machines
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Straight Line as Classifier in 2D Space
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Support Vector Machines (SVM)

Key concepts:
Separating hyperplane — straight line in high-dimensional space

Maximum-margin hyperplane - the distance from the separating
hyperplane to the nearest expression vector as the margin of the hyperplane
Selecting this particular hyperplane maximizes the SVM'’s ability to predict
the correct classification of previously unseen examples.

Soft margin - allows some data points (“soften”) to push their way through
the margin of the separating hyperplane without affecting the final result.
User-specified parameter.

Kernel function - mathematical trick that projects data from a low-
dimensional space to a space of higher dimension. The goal is to choose a
good kernel function to separate data in high-dimensional space.

(Adapted from Noble 2006)



Separating Hyperplane
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Maximum-margin Hyperplane
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Soft Margin
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Kernel Function

Kernel Kernel
Not function: function: 4-D
: separable in : unction. now K space
I 1D space J .= separable for o
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(Adapted from Noble 2006)



Kernal:
Linear
SVM
Linear

Regression

Predictive
Accuracy

=50%

Support
Vectors =0

=MO
Classifier for classes: u
BinarySsMO

Machine linear: showing

attribute weights,

—:”:t:agt

31 % temperature
4 * humidity

Number of kernel evaluations: 66

=== Stratified cross-validation ===

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absolute error

Root mean squared error

Relative absolute error

Root relative sguared error
Total Number nf Instances

=== [Confusion Matrix ===
{-- classified as

= 4Yes
1= no

105

143,
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not support vec

2064

=

oo

071

3236 %

tors,




SMO

Classifier for classes: y

Kernal: won
Polynomial o
(Quadratic
Function)

|l =+ =+ 4+ 4+ 4+ 4+ 4+ 4+ +

Number of support vectors: 10

Number of kernel evaluations: 104

=== Stratified cross-validation ===
Predl(:tlve Correctly Classified Instances
A Tt tly Classified Instances
Kappa tistic
Ccuracy M lute
. 0 Root mean sguared error
_ 786 A) Relative absolute error
Root relative sguared error
Total Number of Instances

Sup p Ort === [Confusion Matrix ===
VCCtOI'S — 10 : 4'1111-- classified as
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J = no




SMO

Classifier for classes: y

Kernal: .
Polynomial
(Cubic
Function)

I + + 4+ + + + + + + + +

Number of support vectors: 12

Number of kernel evaluations: 105

PredlCtlve === Stratified cross-validation ===
14&(:()[[(21(:}/ Correctly Classified Instances

o Incorrectly Classified Inst
— Kappa statistic
85.7% M lute

Root o
Relative absolute error
Root relative sguared error

E;llI)I)()rt Total Number of Ir
VeCtOrS — 12 === Confusion Matrix =

ahb <--classified as
90 | : yes

23| b=no




Overfitting in SVM
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Overfitting

Overfitting : A classifier that performs good on the training
examples but poor on unseen instances.

Low Training-set error: % errors on training data
High Generalisation error: % errors on unseen data

Train and test on same data —»
good classifier with massive overfitting

To avoid overfitting:

*Pruning the model
*Cross-validation (Computational expensive)
«Simpler model (Occam’ s razor)

DTI



Clustering

A method of grouping together data / samples that
are similar in some way — based on certain criteria

Unsupervised learning — no prior knowledge
about the grouping

Arranging objects into groups according to certain
properties (e.g. expressions, mutations etc)

Group members share certain properties in
common and it is hoped that the resultant
classification will provide some insight

Useful for data exploration

Could be used to assign new samples into
“clusters™ —similarities of the new sample to one of
the clusters.



Underlying Concepts

» Clustering depends on

— Similarity determines how closely the objects
resemble each other. Dissimilarity is the
iInverse of this, and this is related to the
concept of distance .

— Distance measure (e.g. Euclidian,
correlation, etc)

— Definition of distance between clusters (e.g.
single linkage, average linkage etc)

— Number of clusters (user-defined or
computationally determined)



Common Clustering Methods

d . Experiment 2 b
Experiment 1 \

Hierarchical Clustering

Experiment 2
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o I N E
* LI
| N
. I Ji
* I AN
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(Adapted from D’haeseleer 2005)



Hierarchical Clustering

Step 1: Start every data point in a separate
cluster.

Step 2: Find pairs of data that are similar,
merge into one cluster

Step 3: Repeat Step 2 until one big cluster
left

Hierarchical clustering is a bottom-up or agglomerative method.
Hierarchical clustering produces a binary tree or dendrogram.
The final cluster is the root and each data point is a leaf.

The height of the bars (braches) indicate how close (distance) between
clusters

Learn hierarchical clustering in today’s workshop



Similarity Measures

Table 1 Gene expression similarity measures

Manhattan distance
(city-block distance, L1 norm)

Euclidean distance
(L2 norm)

Mahalanobis distance

Pearson correlation
(centered correlation)

Uncentered correlation
(angular separation, cosine angle)

Spellman rank correlation

Absolute or squared correlation

dfg = Z‘efc_ egc
c

dg, = ch‘ (er— egc)z

-1
d, = (e, —€,)'Z7 (e, —&,) where X is the (full or within-cluster) covariance matrix of the data

zc(efc_ éf)(egc_ ég)
\/Zc(efc - éf )ch(egc - ég)z

diy=1-"rg, with Iy =

2 efcegc
diy=1="rgy with Ig= = -
\' zc efc Zcegc

As Pearson correlation, but replace eg. with the rank of ey, within the expression values of gene g across
all conditions ¢ = 1...C

dy=1- ’rfg‘ ord,=1-r/

A distance between expression patterns for genes fand g. €gcr expression level of gene g under condition c.

(Adapted from D’haeseleer 2005)



Linkage Methods

Method

Description

Single Linkage

Minimum of all pairwise distances between
points in the two clusters.
Tends to produce long, “loose” clusters.

Complete Linkage

Maximum of all pairwise distances between
points in the two clusters.
Tends to produce very tight clusters.

Average Linkage

Average of all pairwise distances between point
in the two clusters

Centroid Linkage

Each cluster is associated with a mean vector
which is the mean of all the data points in the
cluster.

Distances between two mean vectors.




K-means Clustering

 An iterative method that creates K
clusters.

Step 1: define number of clusters k
Step 2: initialize cluster centers

— Pick k data points and set cluster
centers to these points

— Or randomly assign points to
clusters and take means of
clusters

Step 3: For each data point, compute the
cluster center closest to it and assign the
data point to this cluster

Step 4: Re-compute cluster centers

Stop when there are no new re-
assignments.

I | I T 1
e R




Self-Organizing Maps

It requires pre-define number of
clusters centroids and pre-
specify a topology — a 2D grid
that gives the geometric
relationships between the
clusters.

For each data point, SOM
algorithm moves the cluster
centroids to its closest data

point, but maintaining the
topology specified by the 2D
grid.

At the end of the process, nearby
data points tend to map to
nearby cluster centroids.

[ T vl-l . 1




Comparisons of the Clustering Methods

Hierarchical
Clustering

K-means Clustering

Self-Organizing Map

(SOM)

Easy to implement
Provide intuitive
results (dendrogram)
Hard to decide the
stopping criteria

Easy to implement
Need to pre-specify
number of k clusters
Unstable — due to
random assignment
in different runs

Complicated and lots
of parameters for
“tweaking”

Defining the topology
in high-dimensional
is not obvious

Need to pre-specify
number of k clusters




Comparison between classifiers

« Size (Complex? Simple?)
« Sensitivity, specificity?

« Coverage?

« Compression?

» Receiver Operating Characteristic (ROC)
Curve



10-Fold Cross-validation

(9/10)

Data
Training Test
Set Set
ML

(1/10)

Performance Evaluation




Confusion matrix / Contingency Table

Predicted
Positive | Negative
Positive | TP FN Positive
Actual Examples
Negative | FP TN Negative
Examples

True Positives(TP):
True Negatives(TN):
False Positives(FP):
False Negatives(FN):

xeX+ and h(x) = TRUE
xeX-and h(x) = FALSE
xeX-and h(x) = TRUE
xeX+ and h(x) = FALSE




Performance measurements

Accuracy

IP+TN
ACCMFCZC)/ = 0 <Accuracy <1

IP+FP+1TN+ FN

Accuracy Error, € = 1 - Accuracy

the good measurement for evaluating classifier’ s performance!!

IF the classes are unequally represented 1n the training examples

1000 Training Examples
995  Class A Q Class A
> Class B Accuracy = 99.5%!!




Prediction Reliability

Reliability of Positive Prediction  Reliability of Negative Prediction

(Positive Predicted Value / (Negative Predicted Value)
Precision)
TP IN
PPV = NPV =
1P+ FP IN +FN

0 <PPV <1 0 <NPV <1



More measurements ...

TP-rate (Sensitivity / Recall) TN-rate (Specificity)
1P
o P 1\
IP+FN TN + FP
0<Sn<1 0<Sp <1
FP-rate FN-rate
FN
FP—rate = —-+ I'N —rate =
FP+TN TP+ FN

0 < FP-rate < 1 0 < FN-rate < 1



Other Statistical Measurements

F — measure (van Rijsbergen)

2xrecall x precision 2TP
recall + precision 2TP+ FP+FN

F —measure =

Coefticient Correlation
o (TP*TN — FP* FN)
J(IP + FP)*(FP+TN)*(IN + FN)*(FN +TP)

e < 1.0 no FP or FN
-1<cc <1 CC 0.0 when fis random with respect to S+ and S-
-1.0 only FP and FN



Receiver Operating Curve (ROC)
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Area Under Curve (AUC)

Which classifier performs better? 1 ROC
I | {
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Take home message

Machine learning has been widely applied in
bioinformatics, especially in the classification and
clustering of high-dimensional “omics” data

Need to understand the “problem” (task) and choose
the appropriate machine learning technique

Do compare with different methods
The ultimate goal is to interpret the data



