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Introduction

(Selected) Machine Learning Approaches
— Deep learning - AlphaGo

— Naive Bayes

— Recommendation System

— Ensemble Approach

— Clustering

Feature Selection
* Model evaluation



Deep Learning

Deep learning (also known as deep
structured learning, hierarchical learning or
deep machine learning) is a branch of
machine learning based on a set of
algorithms that attempt to model high-level
abstractions in data by using a deep graph
with multiple processing layers, composed of
multiple linear and non-linear

transformations.
(From Wikipedia)



An illustration

Deep = more “nodes” and “hidden” layers



TensorFlow

TensorFlow ™ GET STARTED TUTORIALS HOWTO MOBILE APl RESOURCES ABOUT

TensorFlow is an Open Source Software
Library for Machine Intelligence

https://www.tensorflow.org/

About TensorFlow

TensorFlow™ is an open source software library for numerical TensorFlow: Open source machine learning
computation using data flow graphs. Nodes in the graph
represent mathematical operations, while the graph edges
represent the multidimensional data arrays (tensors)
communicated between them. The flexible architecture allows

you to deploy computation to one or more CPUs or GPUs ina

desktop, server, or mobile device with a single API.
TensorFlow was originally developed by researchers and Ten SOI"FI OW
engineers working on the Google Brain Team within Google's

Machine Intelligence research organization for the purposes
of conducting machine learning and deep neural networks

research, but the system is general enough to be applicable in
a wide variety of other domains as well.




Example

http://playground.tensorflow.org/

https.//www.youtube.com/watch?v=Iv0o9L
w3nz0

https://www.ted.com/talks/fei fei li how w
e _re teaching computers to understand
pictures?language=en#t-118437




AlphaGO-

A little bit more on Deep Learning
* AlphaGO - general purpose Al

ARTICLE

doi:10.1038/nature16961

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'#, Chris J. Maddison’, Arthur Guez', Laurent Sifre', George van den Driessche’,

Julian Schrittwieser’, Ioannis Antonoglou’, Veda Panneershelvam’, Marc Lanctot’, Sander Dieleman’, Dominik Grewe’,
John Nham?, Nal Kalchbrenner', Ilya Sutskever?, Timothy Lillicrap’, Madeleine Leach’, Koray Kavukcuoglu',

Thore Graepel’ & Demis Hassabis'

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement

= — learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
At last — a computer program that of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
can beat a champion Go player PAGE484 new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
’ our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go

champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.
-~ /
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AlphaGO-
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A little bit more on Deep Learning

(Je0)
+0+ Google DeepMind
° Challenge Match

...... i 8 - 15 March 2016

“0* AlphaGo v Lee Sedol

Match 1 - Livestream O

9th March 13:00 KST, 04:00 GMT ‘

-1 day (8th March) 20:00 PT, 23:00 ET
D+ Google DeepMind
L B )

FINAL SCORES Challenge Match

Live from the Four Seasons Hotel Seoul!

Match Black White Result
1 | Lee Sedol | +0: AlphaGo | W + Res
‘-:'\:-AlphaGo | Lee Sedol B + Res
| Lee Sedol | 0¢ AlphaGo | W + Res
A{"}AIphaGo | Lee Sedol | W+ Res
| Lee Sedol | <8+ AphaGo | W + Res

https://www.youtube.com/watch
?v=TnUYcTuZJpM

Ol 0O0IN



Deep Learning in Medicine

JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY

Development and Validation of a Deep Learning Algorithm Table. Baseline Characteristics”

IMPORTANCE Deep learningis a family of c methods that allow an algorithm to
program itself by learning from a large set of examples that demonstrate the desired

Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng: Jorge Cuadros, D, PhD; Ramasamy Kim, OD, DNB:
Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD

& Editorial pages 2366 and 2368
Supplemental content

Grades per ophthalmologist, median
(interquartile range)

Patient demographics

2021 (304-8366)

8906 (8744-9360)

fOI' Detection Of Diabetic Retinopathy Characteristics Devel Data Set EyePACS-1 Validation Data Set Messidor-2 Validation Data Set
. - No. of images 128175 9963 1748
in Retinal Fundus Photographs c
No. of ophthalmologists 54 8 7
Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD; NO. Of gfades per image 3 _7 8 7

1745 (1742-1748)

behavior, removing the need to specify rules explicitly. Application of these methods to No. of unique individuals 69 573h 4997 874
medical imaging requires further assessment and validation.

Age, mean (SD), y ol (e 54.4 (11.3) 57.6 (15.9)
e O e e S e Ll N s S R G Female, No./total (%) among images 50769/84 734 (59.9)° 5463/8784 (62.2) 743/1745 (42.6)

retinopathy and diabetic macular edema in retinal fundus photographs.

DESIGN AND SETTING A specific type of neural network optimized for image classification
called adeep network using a retrospecti

for which sex was known
Image quality distribution

dataset of 128 175 retinal images, which were graded 3to 7 times for diabetic retinopathy, Fully gradable, No./total (%) among images ~ 52311/69 598 (75.1)¢ 8788/9946 (88.4) 1745/1748 (99.8)
diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists for which image quality was assessed
and ophthalmology senior residents between May and December 2015. The resultant . . —— . =
algorithm was validated in January and February 2016 using 2 separate data sets, both Dlseas_e s_everlty Q'St"blmo” ClaSSIerd_
graded by at least 7 US board-certified ists with highii = ?y ;najonty gec‘ljs'og)of ophthalmologists
reference standar
e Total images for which both diabetic 118419 (100) 8788 (100) 1745 (100)
e I ificity of the algorithm for detecting retinopathy and diabetic macular edema
referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy, were assessed, No. (%)
referable diabetic macular edema, or both, were generated based on the reference standard No diabetic retinopathy 53759 (45.4) 7252 (82.5) 1217 (69.7)
of the majority decision of th ist panel. The algorithrr [ t2
operating points selected from the development se(,onesel:c(edfwhighspedﬁcityand Mild diabetic retinopathy 30637 (25.9) 842 (9.6) 264 (15.1)
nother for high sensitivity. or Afiiations: Google nc.
anotherforhighsensiiity oo\, CafoisGushin, Moderate diabetic retinopathy 24366 (20.6) 545 (6.2) 211 (12.1)
. N . . Peng, Coram, Stumpe, W, - - -
;j:’:gxz:f ofen ke S Nreynasvam Verugopsien, Severe diabetic retinopathy 5298 (4.5) 54 (0.6) 28 (1.6)
Messid jdf::;:‘g:/;" p -rue%]) Faiztéve;r;;;%m: 5:?‘@;2,';’;:;“2“;;*““‘ Proliferative diabetic retinopathy 4359 (3.7) 95 (1.1) 25 (1.4)
4 ly { . For. ing ROR, the al m o v
had : ingcurve 0f 0991 (95%C0988-0993) for EyePACS 1and. L BPREmNBEPACSLLC, Referable diabetic macular edema 18224 (15.4) 272 (3.1) 125 (7.2)
0.990 (95% Cl, 0.986-0.995) for Messidor-2. Using the first operating cut point with high of Optometry, Vision Sci
specificity, for EyePACS-1, ‘hemmzw;sso‘g;‘?(sss;a,%lg ::"L = e . Universty of Referable diabetic retinopathy® 33246 (28.1) 683 (7.8) 254 (14.6)

ity
was 981% (95% C1, 97.8%-98.5%). For Messidor-2, the sensitivity was 87.0% (95% CI, 811%-

California, Berkeley (Cuadros);

Aravind Medical Research

Foundation, Aravind Eye Care @ Summary of image characteristics and available demographic information 9Image quality was assessed for a subset of the development set.

91.0%) and the specificity was 98.5% (95% Cl, 97.7%-991%). Using a second operating point

AL EE A TS R ) e in the development and clinical validation data sets (EyePACS-1and © Referable diabetic retinopathy, defined as the presence of moderate and

i e e Services, Sankara Nethralaya. Messidor-2). Abnormal images were oversampled for the development set worse diabetic retinopathy and/or referable diabetic macular edema according
Chennai, Tamil Nadu, India (Raman); o ini i 2 H g N - " . :

CONCLUSIONS AND RELEVANCE In th ion of retinal adults VerdyLife Scences,ountain View, for algorithm training. The clinical validation sets were not enriched for to the International Clinical Diabetic Retinopathy Scale, ' was calculated for

i e T T g abnormal images. each ophthalmologist before combining them using a majority decision. The

S| resear yto N . N o o o o o . o o

determine the feasibilty of applying this algorith i the cinical setting and ’ igham and Women's Hospial ang ® Unique patient codes (deidentified) were available for 89.3% of the 5-point grades represent the grade that received the highest number of votes

whether use of the algorithm could lead to improved care and outcomes compared with Massachusetts (Mega). development set (n = 114 398 images). for diabetic retinopathy alone. Hence, the sum of moderate, severe, and

it ophthalmologi t. Corresponding Author: Lily Peng, Ry e . . . " .
cumentopTamelogicassessmen WP Googe Reemch 1600 < Individual-level data including age and sex were available for 66.1% of the proliferative diabetic retinopathy for the 5-point grade differs slightly from the

JAMA. 2016;316(22):2402-2410. doi:10.1001/jama. 201617216
Published online November 29, 2016. Corrected on December 13, 2016.

Copyright 2016 American Medical Association. All rights reserved.

Amphitheatre Way, Mountain View,
CA94043 (Ihpeng@google.com).

jama.com

development set (n = 84 734 images).

count of referable diabetic retinopathy images.




Deep Learning in Medicine

Figure 2. Validation Set Performance for Referable Diabetic Retinopathy

m EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%
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Performance of the algorithm (black curve) and ophthalmologists (colored
circles) for the presence of referable diabetic retinopathy (moderate or worse
diabetic retinopathy or referable diabetic macular edema) on A, EyePACS-1
(8788 fully gradable images) and B, Messidor-2 (1745 fully gradable images).
The black diamonds on the graph correspond to the sensitivity and specificity of
the algorithm at the high-sensitivity and high-specificity operating points.

In A, for the high-sensitivity operating point, specificity was 93.4% (95% Cl,
92.8%-94.0%) and sensitivity was 97.5% (95% Cl, 95.8%-98.7%); for the

high-specificity operating point, specificity was 98.1% (95% Cl, 97.8%-98.5%)
and sensitivity was 90.3% (95% Cl, 87.5%-92.7%). In B, for the high-sensitivity
operating point, specificity was 93.9% (95% Cl, 92.4%-95.3%) and sensitivity
was 96.1% (95% Cl, 92.4%-98.3%); for the high-specificity operating point,
specificity was 98.5% (95% Cl, 97.7%-99.1%) and sensitivity was 87.0% (95%
Cl, 811%-91.0%). There were 8 ophthalmologists who graded EyePACS-1and 7
ophthalmologists who graded Messidor-2. AUC indicates area under the
receiver operating characteristic curve.




Deep Learning in Medicine

Dermatologist-level
\ [ classification of skin cancer

Taiid An artificial intelligence trained to classify images of skin lesions as benign
lesions or malignant skin cancers achieves the accuracy of board-certified

dermatologists.

In this work, we pretrain a deep neural network at general object recognition, then fine-
tune it on a dataset of ~130,000 skin lesion images comprised of over 2000 diseases.

FULL NATURE ARTICLE >

OPEN-ACCESS PDF

http://cs.stanford.edu/people/esteva/nature/




Deep Learning in Medicine

Skin lesion image Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task)

® Acral-lentiginous melanoma ) ) )
® Amelanotic melanoma 4 @ 92% malignant melanocytic lesion
® Lentigo melanoma

® Blue nevus . _ )
® Halo nevus & © 8% benign melanocytic lesion

Convolution ® Mongolian spot
AvgPool @

MaxPool
Concat
= Dropout
= Fully connected
= Softmax

https://www.youtube.com/watch?time_continue=1&v=kCIvKNIOWfc
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|
a Carcinoma: 135 images Melanoma: 130 images Melanoma: 111 dermoscopy images
1 1 1
2 2 2
3 ; 8 i
— Algorithm: AUC = 0.96 | — Algorithm: AUC =0.94 ' — Algorithm: AUC = 0.91 '
* Dermatologists (25) ' * Dermatologists (22) ' * Dermatologists (21) '
# Average dermatologist | ¢ Average dermatologist « 0 + Average dermatologist
0 : 0 — :
0 o 1 0 1 0 I
Sensitivity Sensitivity Sensitivity
b Carcinoma: 707 images Melanoma: 225 images Melanoma: 1,010 dermoscopy images
1 1
z b 2 > -
g = g g |
5 |8 3 |
o L= Agorthm: AUG - 0.96 b o L= Agorthm: AuC - 0.06 b o L= Agoritnm: AuG - 0.04 o
0 . 1 0 ) 1 0 1
Sensitivity Sensitivity Sensitivity

Skin cancer classification performance of the CNN and dermatologists. a, The deep learning CNN outperforms the average of the
dermatologists at skin cancer classification (keratinocyte carcinomas and melanomas) using photographic and dermoscopic images. For
each test, previously unseen, biopsy-proven images of lesions are displayed, and dermatologists are asked if they would: biopsy/treat the
lesion or reassure the patient. A dermatologist outputs a single prediction per image and is thus represented by a single red point. The
green points are the average of the dermatologists for each task, with error bars denoting one standard deviation (calculated from n = 25,
22 and 21 tested dermatologists for carcinoma, melanoma and melanoma under dermoscopy, respectively). The CNN is represented by
the blue curve, and the AUC is the CNN’s measure of performance, with a maximum value of 1. The CNN achieves superior performance to
a dermatologist if the sensitivity—specificity point of the dermatologist lies below the blue curve, which most do. b, The deep learning CNN
exhibits reliable cancer classification when tested on a larger dataset. We tested the CNN on more images to demonstrate robust and
reliable cancer classification. The CNN's curves are smoother owing to the larger test set.




Bayes Theorem

In machine learning we are interested to determine the best hypothesis h(x) from space
H, based on the observed training data x.

Best hypothesis = most probable hypothesis, given the data x with any initial knowledge
about the prior probabilities of the various hypothesis in H.

Bayes theorem provides a way to calculate
(i) the probability of a hypothesis based on its prior probability Pr(h(x))
(ii) the probabilities of the observing various data given the hypothesis Pr(x|h)
(iii) the probabilities of the observed data Pr(x)

We can calculate the posterior probability h(x) given the observed data x, Pr(h(x)|x)
using Bayes theorem.

Pr(x| h(x)) Pr(h(x))
Pr(x)

Pr(/(x) | x) =



Training Data

Decision attributes

Independent condition attributes (dependent)
Day |outlook |[temperature |humidity |windy play
1|sunny hot high FALSE [no
2{sunny hot high TRUE |no
3|{overcast |hot high FALSE |[yes
4|rainy mild high FALSE [yes
5/rainy cool normal FALSE [yes
6lrainy cool normal TRUE |no
7/|overcast [cool normal TRUE |vyes
8lsunny mild high FALSE [no
9|sunny cool normal FALSE |[yes
10{rainy mild normal FALSE |yes
11|sunny mild normal TRUE [yes
12|overcast |mild high TRUE |yes
13|overcast |hot normal FALSE |[yes
14|rainy mild high TRUE |no

Today sunny cool high TRUE ?




Naive Bayes

(John & Langley, 1995)

temperature)

humidity

outlook

To use all attributes and allow them to make contributions to
the decision that are equally important and independent of
one another, given the class.



Naive Bayes Classifier

Vyp = argmax Pr(v, )H Pr(a; |v;)

vjEV

Where v\g denotes the target value output by the naive Bayes classifer, Pr(v;)
is the probability of target value v, occurs in the training data,Pr(a;|v;) is the
conditionally independant probability of a; given target value v;.

Summary:

*The naive Bayes learning method involves a learning step in which the various
Pr(v;) and Pr(a;|v;) terms are estimated, based on their frequencies over the
training data.

*The set of these estimates corresponds to the learned hypothesis h(x).

*This hypothesis is then used to classify each new instance by applying the
above rule.

*There is no explicit search through the space of possible hypothesis, instead
the hypothesis is formed simply by counting the frequency of various data
combinations within the training examples.



Nalve Bayes exam_L

Today sunny cool high TRUE

Pr(Play = yes) = 9/14 = 0.64

Pr(Play = no) = 5/14 = 0.36 Pr(yes)Pr(sunny|yes)Pr(cool|yes)
Pr(high|yes)Pr(TRUE|yes)=

Pr(Outlook=sunny|Play = yes) = 2/9 = 0.64%0.22*0.33*0.33*0.33 =

0.22 0.0051

Pr(Outlook=sunny|Play=no) = 3/5 = 0.60
Pr(no)Pr(sunny|no)Pr(cool|no)

Pr(Temperature = cool|Play = yes) =3/9 = Pr(high|no)Pr(TRUE|no)=
0.33 0.36*0.60*0.20*0.80*0.60 =
Pr(Temperature =cool|Play =no) =1/5 = 0.0207
0.20
. : Play = NO
Pr(Humidity = high|Play = yes) = 3/9
=0.33 Probability = 0.0207/(0.0207+0.0051)
Pr(Humidity = high|Play = no) = 4/5 =0.80 =0.80 (80%)

Pr(Wind = TRUE|Play = yes) = 3/9 = 0.33
Pr(Wind = TRUE|Play = no) = 3/5 = 0.60



Example: Netflix Recommendation System
https://www.youtube.com/watch?v=ImpV70ulLxyw

N E T F l | x Watch Instantly ~ Just for Kids ~ Instant Queue

Recently Watched Top 10 for lan

ORANGE
fin BLLACK

AVENTERS




Ensemble Approach

“No Free Lunch Theory”

Rationale — the combination of learning models
iIncreases the classification accuracy

|dea — generate different learners (classifiers) from the
training features that capture different “space”, combine
these learners will provide a better classification

Some approaches:

« Boosting — combination of a set of “weak learners” to
create a single “strong learner” — reducing bias and
variance

» AdaBoost

« Bootstrap aggreating (Bagging) — to average noisy
and unbiased models to create a model with low
variance

 Random Forest — large collection of decision trees
generated with different features




Relative Expression Reversal Classifiers
ORIGINAL PAPER " °.: scsnonomacsoisor

Gene expression

Simple decision rules for classifying human cancers from gene

expression profiles

Aik Choon Tan™*, Daniel Q. Naiman'*2, LeiXu', Raimond L. Winslow' and Donald Geman'+?

'Center for Cardiovascular Bioinformatics and Modeling, Whitaker Biomedical Engineering Institute,
3400 N. Charles Street, Baltimore, MD 21218, USA and “Department of Applied Mathematics
and Statistics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA

Received on May 9, 2005; revised on July 28, 2005; accepted on August 14, 2005
Advance Access publication August 18, 2005

Pairwise rank-based comparisons (relative expression values within each array)
Generates accurate and simple decision rules

— TSP classifier: Top Scoring Pair

— k-TSP classifier: k-disjoint Top Scoring Pairs
Data driven, parameter-free learning algorithm
Performance comparable to or exceeds that of other machine learning methods
Easy to interpret, facilitating follow-up study (small number of genes)




k-TSP Algorithm

k-TSP Algorithm

Input: Training sample S of P genes and N arrays.

Output: k- TSP classifier A rsp.

1. Set an upper bound (X,.x ) on the number of top scoring pairs to be included in the
final &~ TSP classifier (Ag1sp). (Amax= 10 in this study.)

2. (Cross-validation) Repeat m times:

a. Leave out » arrays from the training set S. (» = 3 and m=N/3 in this study.)

b. Compute the score A; and the rank score I';; on the current, reduced
training set for every pair of genes (i, f), 1 <i#j<P.

c. Make an ordered list O of all of the gene pairs (7, j) from largest to
smallest using the lexicographic ordering defined by setting (7, /) > (i', j ")
whenever either A; > A;y- or Ay = A;y-and Ty > Ty

d. Initialize @ at the empty list and perform the following steps for k=1, 2,..,
Kasix:

i. Add the top pair (7, ) in the list O to @.
ii. Remove every pair from O that involves either i or ;.
iii. If k£ is odd, compute the error rate for the classifier based on the £
pairs in @.

3. Select the (odd) value of £ whose average classification rate over the m loops in
Step 2 is optimal and compute the classifier 4. rsp based on the top £ scoring pairs
as follows:

4. Make an ordered list O of gene pairs as in Steps 2b and 2¢ using the entire
training set.

a. Initialize @ at the empty list.

b. Repeat & times:

i. Add the top pair (7,j) in O to ©.
ii. Remove every pair from O that involves either i or .

5. Return hﬂp.




P genes

Basic concegt of the Relative Exgressmn Reversal algorl thm

N samples

A

Cancer Normal

A

P
Ll |

Goal: Find gene signature that can discriminate
between cancer and normal samples

Pre-set number of k (k max)
For each gene pair (i,j)cP, (i#j):
Compute:

Prob (i>j | Cancer)
Prob (i>j | Normal)

Calculate a score:

Score;; =
|Prob(i>j|Cancer) - Prob(i>j|Normal) |
Note: Score;; = 1.0 is the highest score and

it means in all the cancer cases,i>j;
however, this gene expression pattern
reversed in all the normal cases.

Sort the list of Score;; in descending order.
Pick the top pair as the top scoring pair
(TSP). Second top pair as the second top

scoring pair (k=2), etc.

Break ties with the maximum difference in
signal intensity values between gene pair.

Repeat with LOOCV to find optimal k (k with
lowest LOOCV error rate).



(@) TSP (k = 1) AL ANL

IF SPTANI1 > CD33* THEN ALL; ELSE AML A=0.9787

(b) k-TSP (k = 9)

SPTAN1 (J05243)
HA-1 (DB6I76)
TCF3 (M31523)%
ATP2A3 (269881)*
DGKD (D63479)
CCND3 (M92287)%
TOPZ2B (215115)%
Macmarcks

PSMBS (214382)
CD33 (M23197)%
Z2Y¥ (¥95735)*
APLP2 (L09203)
CST3 (M27891)%
MGST1 (U46433)
NPC2 (X67698)
PLCB2 (M9I5678)
CTSD (MB3138)%
DF (MB4526)%

IF SPTANI1 > CD33* THEN ALL; ELSE AML A=0.9787
IF HA-1 > ZYX* THEN ALL; ELSE AML A=0.9787
IF TCF3* > APLP2 THEN ALL; ELSE AML A=0.9574
IF ATP2A3* > CST3* THEN ALL; ELSE AML A=0.9387
IF DGKD > MGSTI1 THEN ALL; ELSE AML A =0.9387
IF CCND3* > NPC2 THEN ALL; ELSE AML A=0.9387
IF TOP2B* > PLCB2 THEN ALL; ELSE AML A=0.9387
IF Macmarcks > CTSD* THEN ALL; ELSE AML A=0.9362

IF PSMB8 > DF* THEN ALL; ELSE AMLA =0.9200
-1 Normalized Expression 4

Low N High

* Genes previously identified by Golub et al (1999)

(Tan et al., 2005, Bioinformatics, 21:3896-3904)



Results

(LOOCYV Binary Class Problems)

Method | Leukemia | CNS DLBCL | Colon Prostatel | Prostate2 | Prostate3 | Lung GCM e
TSP 93.80 77.90 98.10 91.10 95.10 67.60 97.00 98.30 75.40 8.
k-TSP 95.83 97.10 97.40 90.30 91.18 75.00 97.00 98.90 85.40 Qz.m
DT 73.61 67.65 80.52 80.65 87.25 64.77 84.85 96.13 77.86 79.25
NB 100.00 82.35 80.52 58.06 62.75 73.86 90.91 97.79 84.29 81.17
k-NN 84.72 76.47 84.42 74.19 76.47 69.32 87.88 98.34 82.86 8163
SVM 98.61 82.35 97.40 82.26 91.18 76.14 100.00 99.45 93.21 |CV91.18)
PAM 97.22 82.35 85.71 85.48 91.18 79.55 100.00 99.45 79.29 (88.9D
Number of Informative Genes

Method | Leukemia | CNS DLBCL | Colon Prostatel | Prostate2 | Prostate3 | Lung GCM

sP 2 2 2 2 2 2 2 2 2

k-TSP 18 10 2 2 2 18 2 10 10

DT 2 2 3 3 4 4 1 3 14

PAM 2296 4 17 15 47 13 701 9 47

(Tan et al., 2005, Bioinformatics, 21:3896-3904)




IF WFS1* > MEIS1 THEN ALL; ELSE {AML,MLL}
h 1 IF DNTT* > LGALS1* THEN ALL; ELSE {AML,MLL}
IF MYLK* > LGALS1* THEN ALL; ELSE {AML,MLL}

{AML, MLL}

WFS1 (AF084481)x%
DNTT (M11722)%
MYLK (U8953)%
MEIS1 (UB5707)
LGALS1 (283844)%
LGALS1 (M14087)%

IF SCRN1 > HIST2H4 THEN AML; ELSE MLL ™
IF ANPEP* > P29 THEN AML; ELSE MLL

IF CHRNA7 > TLR1 THEN AML; ELSE MLL

IF ATF5 > NFYC THEN AML; ELSE MLL

IF C6orf106 > MEF2C THEN AML; ELSE MLL >—h p
IF PHGDH > CTGF THEN AML; ELSE MLL

IF STAT4 > MEIS1 THEN AML; ELSE MLL

IF AMELX > PQBP1 THEN AML; ELSE MLL

IF DVL1 > ZNF148 THEN AML; ELSE MLL _/

M AML
A

SCRNl (D83777)
ANPEP (M22324)%
CHRNAT (X70297)
ATFS (ABO21663)
Céorf106 (AF0S2106)
PHGDH (AF006043)
STAT4 (L78440)
AMELX (AC002366)
DvL1 (U46461)
HIST2H4 (X00038)
P29 (ALO31432)
TLR1 (AL0OS0262)
NFYC (274792)
MEF2C (L08895)
CTGF (X78347)
MEIS1 (UB5707)
P@BP1 (AJO0OSE33)
ZNF148 (AJ236885)
-1 Normalized Expression 4

low [ high




Results

]
(Test Accuracy for Multi-Class Problems)

Method Leukl Lungl Leuk2 SRBCT Breast Lung?2 DLBCL Leuk3 Cancers GCM Average
HC-TSP 97.06 71.88 80.00 95.00 66.67 83.58 83.33 77.68 74.32 52.17 7817
HC-k-TSP 97.06 78.13 100 100 66.67 94.03 83.33 82.14 82.43 67.39 QS.IZ )
DT 85.29 78.13 80.00 75.00 73.33 88.06 86.67 75.89 68.92 52.17 76.35
NB 85.29 81.25 100 60.00 66.67 88.06 86.67 32.14 79.73 52.17 73.20
k-NN 67.65 75.00 86.67 30.00 63.33 88.06 93.33 75.89 64.86 34.78 6
1-vs-1-SVM 79.41 87.50 100 100 83.33 97.01 100 84.82 83.78 65.22 @8.11
PAM 97.06 78.13 93.33 95.00 93.33 100 90.00 93.75 87.84 56.52 .50

Number of Informative Genes
Method Leukl Lungl Leuk2 SRBCT Breast | Lung2 DLBCL Leuk3 | Cancers | GCM

HC-TSP 4 4 4 6 8 8 10 12 20 26

HC-k-TSP 36 20 24 30 24 28 46 64 128 134

DT 2 4 2 3 4 5 5 16 10 18

PAM 44 13 62 285 4822 614 3949 3338 2008 1253

(Tan et al., 2005, Bioinformatics, 21:3896-3904)



Feedback from k-TSP user

From Nathan Price <nprice@systemsbiology.org>
Sent Friday, March 10, 2006 1:29 pm

To AIK CHOON TAN <actan@jhu.edu>

Subject ktsp

Aik Choon,

Hi again. :-)

As you know, we are big fans of your KTSP method here at ISB. I have
used it now in two collaborations of mine, one with MD Anderson and one
with the Hutch. In one study, KTSP outperformed SVMs etc.
significantly, and in the other it outperformed SVMs etc. dramatically.

For both data sets, the LOOCV is very small. So, I am to the point

where this is by far my favorite approach to classification. I think

the concept of relevant expression reversals is a brilliantly simple

idea for getting around so many of the vagaries associated with data
normalization and standardization across populations.

All the best,

Nathan

Nathan D. Price, Ph.D.

American Cancer Society Postdoctoral Fellow
Hood Lab

Institute for Systems Biology

1441 N. 34th Street

Seattle, WA 98103

Tel: (206) 732-1452

Fax: (206) 732-1299
http://personal.systemsbiology.net/nprice

Systems @@

B O | O g y Revolutionizing science. Enhancing life.




Highly accurate two-gene classifier for differentiating
gastrointestinal stromal tumors and leiomyosarcomas

Nathan D. Price*, Jonathan Trent?, Adel K. EI-Naggar*, David Cogdell*, Ellen Taylor*, Kelly K. HuntS, Raphael E. Pollock$,
Leroy Hood*7, llya Shmulevich*, and Wei Zhang?*! PNAS (2007) 104: 3414-3419.

*Institute for Systems Biology, Seattle, WA 98103; and Departments of 'Sarcoma Medical Oncology, *Pathology, and 5Surgical Oncology, University of Texas
M. D. Anderson Cancer Center, Houston, TX 77030

Contributed by Leroy Hood, December 28, 2006 (sent for review November 29, 2006) IF OBSCN > CQORF65 (PRUNE2) THEN GIST, ELSE LMS

Gastrointestinal stromal tumor (GIST) has emerged as a clinically 105
distinct type of sarcoma with frequent overexpression and muta-

tion of the c-Kit oncogene and a favorable response to imatinib g )
mesylate [also known as STI571 (Gleevec)] therapy. However, a CIaSSIﬁed as GIST 1
significant diagnostic challenge remains in the differentiation of
GIST from leiomyosarcomas (LMSs). To improve on the diagnostic
evaluation and to complement the immunohistochemical evalua-
tion of these tumors, we performed a whole-genome gene expres-
sion study on 68 well characterized tumor samples. Using bioin-
formatic approaches, we devised a two-gene relative expression
classifier that distinguishes between GIST and LMS with an accu-
racy of 99.3% on the microarray samples and an estimated accuracy
of 97.8% on future cases. We validated this classifier by using
RT-PCR on 20 samples in the microarray study and on an additional
19 independent samples, with 100% accuracy. Thus, our two-gene
relative expression classifier is a highly accurate diagnostic method
to distinguish between GIST and LMS and has the potential to be
rapidly implemented in a clinical setting. The success of this
classifier is likely due to two general traits, namely that the O - LMS
classifier is independent of data normalization and that it uses as
simple an approach as possible to achieve this independence to 10 T ""2 —t— '"'3 e "'4 e
avoid overfitting. We expect that the use of simple marker pairs 10 10 10 B 1N

that exhibit these traits will be of significantclinical use in a variety C9orf65 eXpreSSion PRUNE2

of contexts.
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Classified as LMS

OBSCN expression

Fig.2. Expressionvalues of the two genes involvedinthe TSP classifier onthe
Agilent microarrays after quantile normalization. (Note: The classification is
independent of normalization, because the decision is based only on which
We thank Dr. Aik Choon Tan for hclpful assistance with code for the gene is higher’ but the magnitude of the expression Shown does vary some-
k-TSP algorithm. This work was supported by National Institutes of b4 \vith normalization technique.) The separating line (slope = 1) repre-

Health (NIH)/National Cancer Institute (NCI) Grant ROI . . . . .
CA098570-01 (to W.Z.), a grant from the Commonwealth Foundation sents the cutoff for which gene is more highly expressed. It is not a fit to

for Cancer Research (to W.Z. and J.T.), and NIH/National Institute the data.
of General Medical Sciences Grant P50 GM076547 (to L.H.). N.D.P.



RT-PCR Validation

A Pathologists’ Diagnosis
Classified as LMS X — GIST Classified as GIST
O -LMS
QOO © O OO N XX x X xm XXX X X XX x
I L vl L 1ol ol r o r v rarnnl r 1ol r v ol r v aannl ol
10 10° 10" 10° 10’ 10° 10° 10" 10° 10°

OBSCN-c90rf65

IF OBSCN > CQORF65 (PRUNEZ2) THEN GIST, ELSE LMS

LMS = sample
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Integrative Genomic Classifier for IGF1R/IR TKI (OSI-906) in CRC

Human Explants
Training Set Validation Set Test Set

0SI-906 Sensitivity
blue = Sensitive
yellow = Resistant

PROM1>MT1E yes = blue, no= yellow
LY75>0XCT1 yes = blue, no= yellow
HSD17B2>CALD1 yes = blue, no= yellow
IGF1R FISH gain = blue, normal= yellow
KRAS status wt = blue, mut = yellow
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S
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Translational Bioinformatics: Clinical Trials

0SI1-906 and Irinotecan in Patients With Advanced Cancer

This study is currently recruiting participants. ClinicalTrials.gov Identifier:
NCT01016860

First received: November 18, 2009
Last updated: December 28, 2012
Last verified: December 2012
Information provided by (Responsible Party): History of Changes

University of Colorado, Denver

Verified December 2012 by University of Colorado, Denver

Sponsor:
University of Colorado, Denver

Full Text View Tabular View No Study Results Posted Disclaimer [ How to Read a Study Record

P Purpose

This study plans to learn more about an investigational drug called OSI-906. OSI-906 is being looked at to see if it could be a treatment for advanced
cancer. "The FDA is the U.S. government agency that reviews the results of research of drugs and decides if it can be sold in the U.S. OSI-S06 has
been given to over 185 people with cancer.

Condition Intervention Phase

Colorectal Cancer Drug: Treatment with OSI-906 and/or irinotecan Phase 1

Study Type: Interventional

Study Design: Endpoint Classification: Safety/Efficacy Study
Intervention Model: Single Group Assignment
Masking: Open Label
Primary Purpose: Treatment

Official Title: A Phase I/IB Study of OSI-906 and Irinotecan in Patients With Advanced Cancer With Expanded Cohorts of Patients With Colorectal
Cancer Stratified by the OSI-906 Integrated Classifier Pl: Stephen Leong, M.D.

University of Colorado



Clustering

A method of grouping together data / samples that
are similar in some way — based on certain criteria

Unsupervised learning — no prior knowledge
about the grouping

Arranging objects into groups according to certain
properties (e.g. expressions, mutations etc)

Group members share certain properties in
common and it is hoped that the resultant
classification will provide some insight

Useful for data exploration

Could be used to assign new samples into
“clusters™ —similarities of the new sample to one of
the clusters.




Underlying Concepts

» Clustering depends on

— Similarity determines how closely the objects
resemble each other. Dissimilarity is the
iInverse of this, and this is related to the
concept of distance .

— Distance measure (e.g. Euclidian,
correlation, etc)

— Definition of distance between clusters (e.g.
single linkage, average linkage etc)

— Number of clusters (user-defined or
computationally determined)



Common Clustering Methods

d . Experiment 2 b
Experiment 1 \

Hierarchical Clustering

Experiment 2
I R N R
2 u

Experiment 1

¢ K-means Clustering d Self-Organizing Map (SOM)
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Bob Crimi

(Adapted from D’haeseleer 2005)



Hierarchical Clustering

Step 1: Start every data point in a separate
cluster.

Step 2: Find pairs of data that are similar,
merge into one cluster

Step 3: Repeat Step 2 until one big cluster
left

Hierarchical clustering is a bottom-up or agglomerative method.
Hierarchical clustering produces a binary tree or dendrogram.
The final cluster is the root and each data point is a leaf.

The height of the bars (braches) indicate how close (distance) between
clusters



Table 1 Gene expression similarity measures

Manhattan distance
(city-block distance, L1 norm)

Euclidean distance
(L2 norm)

Mahalanobis distance

Pearson correlation
(centered correlation)

Uncentered correlation
(angular separation, cosine angle)

Spellman rank correlation

Absolute or squared correlation

Similarity Measures

dfg = z‘efc_ egc
c

dg, = ch‘ (€r— egc)z

-1
e = (& —€,)' 27 (&, —€,) where X is the (full or within-cluster) covariance matrix of the data

zc(efc_ éf)(egc_ ég)
\/zc(efc_ éf )ch(egc_ é_q)z

diy=1-"rg, with Iy =

ZC efcegc
V 25 efCZZc egcz

As Pearson correlation, but replace eg. with the rank of ey, within the expression values of gene g across
all conditions ¢ = 1...C

diy=1="rgy with Ig=

dy=1- ‘rfg‘ ord,=1-r/

A distance between expression patterns for genes fand g. €gcr expression level of gene g under condition c.

(Adapted from D’haeseleer 2005)



Linkage Method

Method

Description

Single Linkage

* Minimum of all pairwise distances between
points in the two clusters.
« Tends to produce long, “loose” clusters.

Complete Linkage

« Maximum of all pairwise distances between
points in the two clusters.
« Tends to produce very tight clusters.

Average Linkage

« Average of all pairwise distances between point
in the two clusters

Centroid Linkage

« Each cluster is associated with a mean vector
which is the mean of all the data points in the
cluster.

« Distances between two mean vectors.




K-means Clustering

 An iterative method that creates K
clusters.

Step 1: define number of clusters k
Step 2: initialize cluster centers

— Pick k data points and set cluster
centers to these points

— Or randomly assign points to
clusters and take means of
clusters

Step 3: For each data point, compute the
cluster center closest to it and assign the
data point to this cluster

Step 4: Re-compute cluster centers

Stop when there are no new re-
assignments.

*
[ | I T 1
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Self-Organizing Maps

It requires pre-define number of
clusters centroids and pre-
specify a topology — a 2D grid
that gives the geometric
relationships between the
clusters.

For each data point, SOM
algorithm moves the cluster
centroids to its closest data

point, but maintaining the
topology specified by the 2D
grid.

At the end of the process, nearby
data points tend to map to
nearby cluster centroids.

>
[ T ;ll-l . 1




Comparisons of the Clustering Methods

Hierarchical
Clustering

K-means Clustering

Self-Organizing Map

(SOM)

Easy to implement
Provide intuitive
results (dendrogram)
Hard to decide the
stopping criteria

Easy to implement
Need to pre-specify
number of k clusters
Unstable — due to
random assignment
in different runs

Complicated and lots
of parameters for
“tweaking”

Defining the topology
in high-dimensional
is not obvious

Need to pre-specify
number of k clusters




Classifying Microarray Gene Expression data

 Different from other problems because the
characteristics of microarray data:

* Large p small n problem

— Number of candidate features (p) greatly
exceeds the number of samples (n) (p>>n)

— Typical data: p > 10,000, n < 100

— Hypothesis space H is very large (any
combination of p has high possibility to be a
good classifier)

— Easily overfit the training examples (n)



Gene gFeature Subset 2 Select

10N

Optimal
genes

All Genes
(Features)
Feature | search Feature Subset
Subset |Algorithms) Generation
Selection (Search Algorithms)
1 Optimal genes Selectedl xEvaluation
- genes
Learr_nng Learning
Algorithm Algorithm

L

Optimal genes

Learning Algorithm ‘

(a) Filter approach

(b) Wrapper approach




Overfitting

Overfitting : A classifier that performs good on the training
examples but poor on unseen instances.

Low Training-set error: % errors on training data
High Generalisation error: % errors on unseen data

Train and test on same data —»
good classifier with massive overfitting

To avoid overfitting:

*Pruning the model
*Cross-validation (Computational expensive)
«Simpler model (Occam’ s razor)

DTI



Comparison between classifiers

« Size (Complex? Simple?)
« Sensitivity, specificity?

« Coverage”

« Compression?

» Receiver Operating Characteristic (ROC)
Curve




10-Fold Cross-validation

(9/10)

Data
Training Test
Set Set
ML

(1/10)

Performance Evaluation




Confusion matrix / Contingency Table

Predicted
Positive | Negative
Positive | TP FN Positive
Actual Examples
Negative | FP TN Negative
Examples
True Positives(TP): xeX+ and h(x) = TRUE
True Negatives(TN): xeX- and h(x) = FALSE
False Positives(FP): xeX-and h(x) = TRUE

False Negatives(FN): xeX+ and h(x) = FALSE



Performance measurements

Accuracy

IP+TN
ACCMFCZC)/ = 0 <Accuracy <1

IP+FP+1TN+ FN

Accuracy Error, € = 1 - Accuracy

the good measurement for evaluating classifier’ s performance!!

IF the classes are unequally represented 1n the training examples

1000 Training Examples
995 Class A a Class A
> Class B Accuracy = 99.5%!!




Prediction Reliability

Reliability of Positive Prediction  Reliability of Negative Prediction

(Positive Predicted Value / (Negative Predicted Value)
Precision)
TP IN
PPV = NPV =
1P+ FP IN +FN

0 <PPV <1 0 <NPV <1



More measurements ...

TP-rate (Sensitivity / Recall) TN-rate (Specificity)
1P
o P 1\
IP+FN TN + FP
0<Sn<1 0<Sp <1
FP-rate FN-rate
FN
FP—rate = —-+ I'N —rate =
FP+TN TP+ FN

0 < FP-rate < 1 0 <FN-rate < 1



Other Statistical Measurements

F — measure (van Rijsbergen)

2xrecall x precision 2TP
recall + precision 2TP+ FP+FN

F —measure =

Coefticient Correlation
o (TP*TN — FP* FN)
J(IP + FP)*(FP+TN)*(IN + FN)*(FN +TP)

o < 1.0 no FP or FN
-1<cc <1 CcC 0.0 when fis random with respect to S+ and S-
-1.0 only FP and FN



Receiver Operating Curve (ROC)

ROC
1 @ | | | | | | | —7 3
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Area Under Curve (AUC)

Which classifier performs better? 1 ROC
I | {
Area Under Curve (AUC) as a 0.9 T .
Measure of a classifier’ s performance o.s |- -
0.7 - —T -
Area of trapezoid L0 7
The area of a trapezoid is simply o 8.5 g
the average height times the width 0.4 g
of the base. 2.3 H A :
1. function frap _area(x1;x2; y1; y2) g.c T n
2. Base = |x1-x2| .1 |- i
3. Heightavg = (¥1+Y2)/2 0 ‘ I I | | | | | L L
g- (';ent:';:r?;?gn"'e'ghtavg 9 ©.10.209.30.40.50.60.70.808.9 1
FPR
2 A,AUC =0.8
y

x1 X2



Take home message

Machine learning has been widely applied in
bioinformatics, especially in the classification and
clustering of high-dimensional data

Need to understand the “problem” (task) and choose
the appropriate machine learning technique

Do compare with different methods
The ultimate goal is to interpret the data
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